www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis Hilfestellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Beweis Hilfestellung
Beweis Hilfestellung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Hilfestellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mo 07.03.2005
Autor: MrElgusive

Hallo!

Habe folgendes Beispiel zu lösen, weiß aber diesmal überhaupt keinen Ansatz, wie ich dieses Aufgabe beweisen soll.

Seien  [mm] x_{1},...,x_{n} \in \IR^{n}. [/mm] Zeigen Sie, dass genau ein x [mm] \in \IR^{n} [/mm] existiert und bestimmen Sie dieses, sodass die Summe der Quadrate der Abstände von x zu [mm] \x_{i}, [/mm] das heißt  [mm] \summe_{i=1}^{m} \parallel [/mm] x - [mm] x_{i} \parallel^{2}_{2}, [/mm] minimiert wird.

Danke für eure Hilfe!

Grüße,
  Christian.

        
Bezug
Beweis Hilfestellung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Di 08.03.2005
Autor: felixs

morgen.

> Seien  [mm]x_{1},...,x_{n} \in \IR^{n}.[/mm] Zeigen Sie, dass
> genau ein x [mm]\in \IR^{n}[/mm] existiert und bestimmen Sie dieses,
> sodass die Summe der Quadrate der Abstände von x zu [mm]\x_{i},[/mm]
> das heißt  [mm]\summe_{i=1}^{m} \parallel[/mm] x - [mm]x_{i} \parallel^{2}_{2},[/mm]
> minimiert wird.

ich wuerd das ding einfach mal nach [mm] $x=(x^{(1)},\ldots,x^{(n)})$ [/mm] ableiten.
dannn steht da sowas wie
[mm] $(\partial_{x^(1)}, \ldots [/mm] , [mm] \partial_{x^(n)}) \sum_{i} \langle x-x_i [/mm] , [mm] x-x_i \rangle$ [/mm]
$ = [mm] \left( \partial_x^{(k)} \sum_{i} \sum_{l} (x^{(l)}-x_i^{(l)})^2 \right)_{k \in \{1,\ldots,n\}}$ [/mm]
das soll irgendwie $0$ sein. und da kommt man dann ziemlich schnell auf $ { [mm] x^{(k)}=\sum_i x_i^{(k)}} [/mm] / { m } [mm] \, \forall [/mm] k$.
danach musst du natuerlich noch die 2. ableitung an der stelle ausrechnen. sollte eigentlich pos. def. sein und so...

hth
--felix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]