www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenBeweis Lösungen liegen imKreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Beweis Lösungen liegen imKreis
Beweis Lösungen liegen imKreis < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:15 Mo 09.11.2009
Autor: together

Aufgabe
Seien n [mm] \in \IN [/mm] \ {0} und [mm] a_{i} \in \IC [/mm] mit [mm] |a_{i}|< [/mm] 1. Sei [mm] P(z)=z^n+a_{1}z^{n-1}+...+a_{n-1}z+a_{n}. [/mm]
Zeigen Sie, dass alle Lösungen von P(z)=0 innerhalb des Kreises |z|=n liegen.

Hallo zusammen,

wie führe ich solch einen Beweis?
Mit vollständiger Induktion?
Und ich dachte, da [mm] |a_{i}|< [/mm] 1, kann die 1 in P(z) nicht vorkommen....aber das scheint ja falsch zu sein.

Ich bin für Tipps dankbar.

Ich habe die Frage in keinem anderen Forum oder keinen anderen Internetseiten gestellt.

VG
together

        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Mo 09.11.2009
Autor: pelzig

Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist [mm] $$|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}$$ [/mm] Gruß, Robert

Bezug
                
Bezug
Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Mo 09.11.2009
Autor: together


> Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist
> [mm]|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}[/mm]
> Gruß, Robert

Und das reicht als Beweis?

VG
together

Bezug
                        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Mo 09.11.2009
Autor: fred97


> > Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist
> >
> [mm]|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}[/mm]
> > Gruß, Robert
>
> Und das reicht als Beweis?


Na, klar

Robert hat gezeigt: aus $|z| [mm] \ge [/mm] 1$ folgt $|z| [mm] \le [/mm] n$

Ist $|z| < 1$ , so ist trivialerweise $|z| [mm] \le [/mm] n$

FRED


>  
> VG
>  together


Bezug
                                
Bezug
Beweis Lösungen liegen imKreis: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Mo 09.11.2009
Autor: together

Vielen Dank an euch!

VG
together

Bezug
                                
Bezug
Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Di 10.11.2009
Autor: peeetaaa

ach und da muss man jetzt gar nichts mehr auflösen oder so?

Bezug
                                        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Di 10.11.2009
Autor: fred97

Nein

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]