www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreBeweis Mengenrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Beweis Mengenrelation
Beweis Mengenrelation < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Mengenrelation: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:46 Mi 24.10.2012
Autor: sarah88

Aufgabe
Weisen Sie formal nach, dass für beliebige Mengen M und N folgende Aussage richtig ist:

M [mm] \subset [/mm] N => P(M) [mm] \subset [/mm] P(N)

Hallo habe eine Frage zu dieser Aufgabe. Ich habe zwei Ansätze und weiß nicht so genau welcher richtiger ist oder ob vielleicht beide Quatsch sind^^.
Über einen Tip würde ich mich sehr freuen :)

1. Da M [mm] \subset [/mm] N => M [mm] \in [/mm] P(N) und da M [mm] \in [/mm] P(M) folgt P(M) [mm] \subset [/mm] P(N)

2. Sei x [mm] \in [/mm] M beliebig, da M [mm] \subset [/mm] N => x [mm] \in [/mm] N => x [mm] \in [/mm] P(N)
    Da x [mm] \in [/mm] M => x [mm] \in [/mm] P(M)
    => P(M) [mm] \subset [/mm] P(N)

        
Bezug
Beweis Mengenrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Mi 24.10.2012
Autor: schachuzipus

Hallo sarah88,


> Weisen Sie formal nach, dass für beliebige Mengen M und N
> folgende Aussage richtig ist:
>  
> M [mm]\subset[/mm] N => P(M) [mm]\subset[/mm] P(N)
>  Hallo habe eine Frage zu dieser Aufgabe. Ich habe zwei
> Ansätze und weiß nicht so genau welcher richtiger

oder am richtigsten ;-)

> ist
> oder ob vielleicht beide Quatsch sind^^.
>  Über einen Tip würde ich mich sehr freuen :)
>  
> 1. Da M [mm]\subset[/mm] N => M [mm]\in[/mm] P(N) [ok] und da M [mm]\in[/mm] P(M) folgt
> P(M) [mm]\subset[/mm] P(N)

Warum/woraus folgt das?

>  
> 2. Sei x [mm]\in[/mm] M beliebig, da M [mm]\subset[/mm] N => x [mm]\in[/mm] N => x [mm]\in[/mm]
> P(N) [notok]

In $P(N)$ sind Teilmengen von $N$, nicht Elemente!

>      Da x [mm]\in[/mm] M => x [mm]\in[/mm] P(M)

Nein

>      => P(M) [mm]\subset[/mm] P(N)

Du musst doch zeigen, dass unter der Vor, [mm]M\subset N[/mm] gefälligst [mm]P(m)\subset P(N)[/mm] ist, dass also jedes Element in [mm]P(M)[/mm] auch in [mm]P(N)[/mm] ist.

Nimm dir also eine bel. Menge [mm]A\in P(M)[/mm] her.

Zeigen musst du, dass auch [mm]A\in P(N)[/mm]

[mm]A\in P(M)[/mm] heißt aber nach Def. der Potenzmenge: [mm]A\subset M[/mm]

Nun folgere daraus mithilfe der Voraussetzung, dass auch [mm]A\subset N[/mm], also [mm]A\in P(N)[/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Beweis Mengenrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Mi 24.10.2012
Autor: sarah88

danke für die schnelle antwort, das hat mir sehr weiter geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]