www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationBeweis Minimum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Beweis Minimum
Beweis Minimum < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Minimum: Beweis
Status: (Frage) beantwortet Status 
Datum: 16:14 Mo 26.01.2009
Autor: Bleistiftkauer

Aufgabe
Seien a,b [mm] \in \IR [/mm] mit a < b für das gilt f(X) = k+1
Zeigen sie: ist f''(x) > 0, so besitzt f in x ein Minimum.

Hab keine ahnung wie ich das beweisen soll! hoffe dass einer mir helfen kann!

        
Bezug
Beweis Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mo 26.01.2009
Autor: djmatey

Hallo,

da kommen aber ganz schön viele Variablen vor, die da nicht hingehören... Was sollen denn a, b und dort? Hängt die Funktion von k ab oder von x, oder beides?

LG djmatey

Bezug
                
Bezug
Beweis Minimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Mo 26.01.2009
Autor: Bleistiftkauer

ach vergessen: ]a,b[--> /IR

Bezug
                        
Bezug
Beweis Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mo 26.01.2009
Autor: djmatey

Hallo,

was ist denn k?
Falls k konstant ist, ist jede Ableitung konstant 0, dann macht die Aufgabe keinen Sinn.
Falls du meinst
f(x) = x+1
ist die 2. Ableitung ebenfalls gleich 0, macht auch keinen Sinn.

Wenn ich mal von hinten anfange und f''(x) > 0 voraussetze, finde ich sofort ein Gegenbeispiel mit
f''(x) = 2
f'(x) = 2x
f(x) = [mm] x^2 [/mm]

Dann müsste [mm] x^2 [/mm] an allen Stellen x ein Minimum haben, was natürlich Käse ist.
Ich vermute, die Aufgabenstellung ist nicht vollständig!?

LG djmatey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]