www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseBeweis Potenzregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Induktionsbeweise" - Beweis Potenzregel
Beweis Potenzregel < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Potenzregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 16.01.2006
Autor: ANTONIO

Aufgabe
Beweis [mm] a^m*a^n=a^{m+n} [/mm] für n,m Element N

Hallo,
in meinem Brückenkurs Fernuni wird die Regel nicht bewiesen sondern nur [mm] a^m [/mm] definiert [mm] :=$a\cdot ....\cdot [/mm] a$ (m-mal) Kurze Zeit später wird darauf hingewiesen daß "..." für skeptische Naturen eigentlich unbefriedigend sei. Habe ich mit Kanonen auf Spatzen geschossen, wenn ich das ganze mit vollständiger Induktion beweise? Alternativ fiel mir nur folgendes ein, das ich irgendwie doch etwas dünn weil über die Anschauung gehend finde (bin ich hier zu kritisch ?):
[mm] $a^m:= a\cdot ....\cdot [/mm] a (m-mal)$
[mm] $a^n:= a\cdot ....\cdot [/mm] a (n-mal)$
=>$ [mm] a^m \cdot a^n =a\cdot ....\cdot [/mm] a [mm] (m-mal)\cdot a\cdot ....\cdot [/mm] a $(n-mal)
[mm] $a^{m+n}:= a\cdot ....\cdot [/mm] a (m+n-mal)$
=> [mm] $a^{m+n}=a^m \cdot a^n [/mm] $
Grüße
Frank
PS:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
PPS: Das hatte ich übrigens schon bei meinem ersten Posting vor ein paar Tagen zugesichert. Ich finde die Formulierung "bei eine deiner ersten Fragen" überraschend, gibt es mehr als eine 1. Frage? Was wäre eine Formulierungsalternative? möglicherweise eine Konkretisierung: bei deinen ersten vier Fragen. War das hier schon häufig ein Diskusssionspunkt?;-)

        
Bezug
Beweis Potenzregel: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 01:24 Di 17.01.2006
Autor: leduart

Hallo Antonio
> Beweis [mm]a^m*a^n=a^{m+n}[/mm] für n,m Element N
>  Hallo,
>  in meinem Brückenkurs Fernuni wird die Regel nicht
> bewiesen sondern nur [mm]a^m[/mm] definiert :=[mm]a\cdot ....\cdot a[/mm]
> (m-mal) Kurze Zeit später wird darauf hingewiesen daß "..."
> für skeptische Naturen eigentlich unbefriedigend sei. Habe
> ich mit Kanonen auf Spatzen geschossen, wenn ich das ganze
> mit vollständiger Induktion beweise? Alternativ fiel mir
> nur folgendes ein, das ich irgendwie doch etwas dünn weil
> über die Anschauung gehend finde (bin ich hier zu kritisch

Nein , vollst. Ind. ist der einzige wirklich auf Uniebene anerkannte Weg!
ausgehen darfst du dabei von der Daefinition [mm] a^{1}=a [/mm] und [mm] a^{m+1}=a*a^{m}. [/mm] Wenn du Gestze wie das Assotiativitätsgesetz verwendest, musst du das auch sagen, im übrigen ist die Induktion nicht schwer.
Pünktchen sind ne Art veranschaulichung, also für die Schule evt. geeignet, aber KEIN Beweis.

>  [mm]a^m:= a\cdot ....\cdot a (m-mal)[/mm]
>  [mm]a^n:= a\cdot ....\cdot a (n-mal)[/mm]
>  
> =>[mm] a^m \cdot a^n =a\cdot ....\cdot a (m-mal)\cdot a\cdot ....\cdot a [/mm](n-mal)
>  
> [mm]a^{m+n}:= a\cdot ....\cdot a (m+n-mal)[/mm]
>  => [mm]a^{m+n}=a^m \cdot a^n[/mm]

>  
> Grüße
>  Frank
>  PS:Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  PPS: Das hatte ich übrigens schon bei meinem ersten
> Posting vor ein paar Tagen zugesichert. Ich finde die
> Formulierung "bei eine deiner ersten Fragen" überraschend,
> gibt es mehr als eine 1. Frage? Was wäre eine
> Formulierungsalternative? möglicherweise eine
> Konkretisierung: bei deinen ersten vier Fragen. War das
> hier schon häufig ein Diskusssionspunkt?;-)

Hie und da schon mal.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]