www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBeweis Quantile
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Beweis Quantile
Beweis Quantile < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Quantile: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:42 So 13.11.2011
Autor: MattiJo

Aufgabe
(a) Seien v, w : R → R zwei nichtfallende und rechtsseitig stetige Funktionen. Für jede Zufallsvariable X : Ω → R gilt dann für fast jedes y ∈ [0,1]

[mm] F^{-1}_{v(X)}(y) [/mm] = [mm] v(F^{-1}_{X}(y)) [/mm] und [mm] F^{-1}_{v(X)+w(X)}(y) [/mm] = [mm] F^{-1}_{v(X)}(y) [/mm] + [mm] F^{-1}_{w(X)}(y) [/mm]

Hinweis: Benutzen Sie, dass y [mm] \le [/mm] F(x) genau dann, wenn [mm] F^{-1}(y) \le [/mm] x.


(b) Sei X integrierbar, d.h. E|X| < [mm] \infty. [/mm] Dann gilt

EX = [mm] \integral_{0}^{1}{F^{-1}_{X}(y) dy} [/mm]

Hinweis: Benutzen Sie dazu die Zerlegung [mm] X=X^{+} [/mm] - [mm] X^{-} [/mm] und wenden Sie Teilaufgabe (a) an. Hilfreich dabei ist, dass EX = [mm] \integral_{0}^{\infty}{1 - F_{X}(x) dx} [/mm] - [mm] \integral_{-\infty}^{0}{F_{X}(x) dx} [/mm] gilt, falls E|X| < [mm] \infty [/mm]  sowie die Beobachtung, dass [mm] \integral_{0}^{1}{F_{X}^{-1}(y) dy} [/mm] = [mm] \integral_{0}^{1}{\integral_{0}^{\infty}{indikator_{(0,F_{X}^{-1}(y))}(x) dx dy}}. [/mm]


Hallo zusammen,
leider habe ich lange keine Mathevorlesung mehr gehört, bin jetzt aber mit Beginn meines Masterstudiums in Elektrotechnik wieder in eine Stochastikvorlesung eingestiegen. Deshalb bin ich nicht mehr so vertraut mit dem Jargon (und insbesondere mit korrekt ausgeführten Beweisen) und hoffe, ihr könnt mir dabei helfen, obige Aufgabe zu lösen.
Die genaue Bedeutung eines Quantils hab ich noch nicht verstanden, erkenne aber bei (a) einen linearen Zusammenhang. Weiterhin weiß ich, dass die verallgemeinerte Inverse (laut meines Skripts) definiert ist durch [mm] F_{X}^{-1} [/mm] = inf{x : [mm] F_{X}(x) \ge [/mm] y}, [mm] y\in[0,1]. [/mm]
Wie kann ich den Beweis durchführen?

        
Bezug
Beweis Quantile: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 Mo 14.11.2011
Autor: Blech

Hi,

> $ [mm] F^{-1}_{v(X)}(y) [/mm] $ = $ [mm] v(F^{-1}_{X}(y)) [/mm] $

es is verdammt spät, aber ich seh nicht, wie das gelten soll.

Bsp:

$ [mm] P(X\leq [/mm] x) = [mm] \frac [/mm] 23 x * [mm] 1_{0

[mm] $v(x)=1_{x\geq 1}$ [/mm]


[mm] $F^{-1}_{v(X)}(\frac [/mm] 23) = 0$  (denn [mm] $P(v(X)=0)=\frac [/mm] 23$)

[mm] $v(F^{-1}_{X}(\frac [/mm] 23)) =1$ (denn [mm] $F^{-1}_{X}(\frac [/mm] 23)=1$)


n8
Stefan

Bezug
                
Bezug
Beweis Quantile: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Mo 14.11.2011
Autor: MattiJo

eventuell daher die angabe "für fast jedes y" ? Erscheint mir etwas schwammig, die Aufgabenstellung...

Bezug
                        
Bezug
Beweis Quantile: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Mo 14.11.2011
Autor: Blech

Hmm, stimmt, hatte ich überlesen.


Eine rechtsseitig stetige Funktion hat höchstens abzählbar viele Unstetigkeitsstellen.

An Stetigkeitsstellen gilt

[mm] $v(X)\leq [/mm] x\ [mm] \Leftrightarrow\ X\leq v^{\leftarrow}(x)$ [/mm]
(das ist von den Ungleichungen her genau die umgekehrte Richtung zu Deinem Hinweis)

wobei [mm] $v^{\leftarrow}(x) :=\inf\{z;\ v(z)>x\}$ [/mm]
(man beachte die abweichende Definition zur Quantilsfunktion)


Jetzt fängst Du mit
[mm] $v(F^{-1}_X(y))\leq [/mm] x\ [mm] \Leftrightarrow\ \ldots$ [/mm]

an, und wendest so lange die Äquivalenzen für [mm] $F^{-1}$ [/mm] und [mm] $v^\leftarrow$ an bis $\Leftrightarrow\ F^{-1}_{v(X)}(y) \leq x$ rauskommt. > $ F^{-1}_{v(X)+w(X)}(y) = F^{-1}_{v(X)}(y) + F^{-1}_{w(X)}(y) $ v(x)+w(x)=(v+w)(x) v+w ist eine monoton steigende, rechtsseitig stetige Funktion. Jetzt wendest Du das erste Ergebnis an. ciao Stefan [/mm]

Bezug
        
Bezug
Beweis Quantile: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 15.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]