www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Beweis Ungleichung
Beweis Ungleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Fr 10.10.2008
Autor: yildi

Aufgabe 1
Sei n eine natürliche Zahl. Beweisen Sie die folgenden Aussagen:
a) Sind [mm] a_{1},...,a_{n} [/mm] positive reelle Zahlen, so gilt:

[mm] \produkt_{i=1}^{n} (1 + a_{i}) \ge 1 + \summe_{i=1}^{n} a_{i} [/mm]

Aufgabe 2
Sei n eine natürliche Zahl. Beweisen Sie die folgenden Aussagen:
b) Sind [mm] a_{1},...,a_{n} [/mm] reelle Zahlen mit 0 [mm] \le a_{i} [/mm] < 1 für alle i [mm] \in [/mm] {1,...,n}, so gilt:

[mm] \produkt_{i=1}^{n} (1 - a_{i}) \ge 1 - \summe_{i=1}^{n} a_{i} [/mm]

Hallo!

Diese beiden Ungleichungen soll ich beweisen (Ich vermute mit vollständiger Induktion). Allerdings komm ich nicht sehr weit. Also zuerst hab ich die Produkt- und Summenformeln umgewandelt, sodass ich jeweils erhalte:

a) [mm] (a+1)^{n} \ge 1 + (a*n) [/mm]
b) [mm] (1-a)^{n} \ge 1 - (a*n) [/mm]

Den Induktionsanfang hab ich natürlich gemacht, kein Thema. Aber wenn ich nun n durch n+1 ersetze komm ich irgendwann nicht weiter. Also für a) hab ich:


[mm](a+1)^{n+1} \ge 1 + (a*(n+1))[/mm]
[mm](a+1)^{n+1} \ge an + a + 1[/mm]

dann hab ich zur vereinfachung a+1 durch x substituiert

[mm](x)^{n+1} \ge an + x[/mm]



und bei b)

[mm](1-a)^{n+1} \ge 1 - (a*(n+1))[/mm]
[mm](1-a)^{n+1} \ge 1 - (an + a)[/mm]



Und nun komm ich an beiden Stellen eben nicht weiter, weil ich nicht weiss welche Termumformungen ich machen müsste, um da klipp und klar bewisen zu haben, dass die Gleichung stimmt. Ich hoffe mir kann jemand helfen. Vielen vielen Dank schonmal!

Phillip

        
Bezug
Beweis Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Fr 10.10.2008
Autor: XPatrickX


> Sei n eine natürliche Zahl. Beweisen Sie die folgenden
> Aussagen:
>  a) Sind [mm]a_{1},...,a_{n}[/mm] positive reelle Zahlen, so gilt:
>  
> [mm] \produkt_{i=1}^{n} (1 + a_{i}) \ge 1 + \summe_{i=1}^{n} a_{i} [/mm]
>  
> Sei n eine natürliche Zahl. Beweisen Sie die folgenden
> Aussagen:
>  b) Sind [mm]a_{1},...,a_{n}[/mm] reelle Zahlen mit 0 [mm]\le a_{i}[/mm] < 1
> für alle i [mm]\in[/mm] {1,...,n}, so gilt:
>  
> [mm] \produkt_{i=1}^{n} (1 - a_{i}) \ge 1 + \summe_{i=1}^{n} a_{i} [/mm]
>  
> Hallo!
>  
> Diese beiden Ungleichungen soll ich beweisen (Ich vermute
> mit vollständiger Induktion). [ok] Allerdings komm ich nicht
> sehr weit. Also zuerst hab ich die Produkt- und
> Summenformeln umgewandelt, sodass ich jeweils erhalte:
>  
> a) [mm](a+1)^{n} \ge 1 + (a*n)[/mm]
>  b) [mm](1-a)^{n} \ge 1 - (a*n)[/mm]
>  

NEIN! Das ist falsch, denn die [mm] a_i [/mm] sind möglicherweise unterschiedlich, bei deiner Umformung müssten sie alle gleich sein.
Eine Umwandlung ist hier weder möglich noch nötig.

Ok, schaun wir uns mal den Ind.-Schritt bei der a.) an:

[mm] \produkt_{i=1}^{n+1} [/mm] (1 + [mm] a_{i}) =\produkt_{i=1}^{n} [/mm] (1 + [mm] a_{i}) [/mm] * [mm] (1+a_{n+1}) \ge\limits_{I.V.} [/mm] 1 - [mm] \summe_{i=1}^{n} a_{i} [/mm] * [mm] (1+a_{n+1}) \ge [/mm] ...

schätze jetzt nochmal ab und dann bist du schon fast bei: 1 + [mm] \summe_{i=1}^{n+1} a_{i}, [/mm] was dann zu zeigen war.


> Den Induktionsanfang hab ich natürlich gemacht, kein Thema.
> Aber wenn ich nun n durch n+1 ersetze komm ich irgendwann
> nicht weiter. Also für a) hab ich:
>  
>
> [mm](a+1)^{n+1} \ge 1 + (a*(n+1))[/mm]
>  [mm](a+1)^{n+1} \ge an + a + 1[/mm]
>  
> dann hab ich zur vereinfachung a+1 durch x substituiert
>  
> [mm](x)^{n+1} \ge an + x[/mm]
>  
>
>
> und bei b)
>  
> [mm](1-a)^{n+1} \ge 1 - (a*(n+1))[/mm]
>  [mm](1-a)^{n+1} \ge 1 - (an + a)[/mm]
>  
>
>
> Und nun komm ich an beiden Stellen eben nicht weiter, weil
> ich nicht weiss welche Termumformungen ich machen müsste,
> um da klipp und klar bewisen zu haben, dass die Gleichung
> stimmt. Ich hoffe mir kann jemand helfen. Vielen vielen
> Dank schonmal!
>  
> Phillip

Grüße Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]