www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis Untergruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Beweis Untergruppe
Beweis Untergruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Untergruppe: Frage
Status: (Frage) beantwortet Status 
Datum: 21:13 Mi 04.05.2005
Autor: michael7

Hallo zusammen,

folgendes soll gezeigt werden:

Ist $U$ eine Untergruppe von [mm] $(\IZ, [/mm] +)$, so existiert ein [mm] $n\in\IN_{0}$ [/mm] mit [mm] $U=n\IZ$. [/mm]

Also Hinweise haben wir bekommen:

- Jede nicht leere Teilmenge von [mm] $\IN_{0}$ [/mm] hat ein kleinstes Element.
- Division mit Rest.

Wir hatten nun die Idee, dass man argumentieren koennte

[mm] $\exists a\in [/mm] U: [mm] \forall u\in [/mm] U: |a| < |u|$,

also dass ein betragsmaessig kleinstes Element existiert. Dieses $|a|$ verwendet man als Erzeuger. [mm] $a^n$ [/mm] fuer alle [mm] $n=\{0, \pm 1, \pm 2, \ldots\}$ [/mm] erzeugt dann alle Elemente der Untergruppe bzw. der Linksnebenklasse von [mm] $\IZ$. [/mm]

Ist der Ansatz ok? Irgendwelche Tipps wie man weitermachen koennte bzw. was man noch beachten muss?

Michael

        
Bezug
Beweis Untergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 04.05.2005
Autor: Hanno

Hallo!

> Wir hatten nun die Idee, dass man argumentieren koennte
> $ [mm] \exists a\in [/mm] U: [mm] \forall u\in [/mm] U: |a| < |u| $,
> also dass ein betragsmaessig kleinstes Element existiert. Dieses $ |a| $ verwendet man als Erzeuger.

[ok]

>  $ [mm] a^n [/mm] $ fuer alle $ [mm] n=\{0, \pm 1, \pm 2, \ldots\} [/mm] $ erzeugt dann alle Elemente der Untergruppe bzw. der Linksnebenklasse von $ [mm] \IZ [/mm] $.

[ok] (bloß schreibt man hier nicht [mm] $a^n$ [/mm] sondern [mm] $n\cdot [/mm] a$, man verwendet also die additive Schreibweise)

> Ist der Ansatz ok? Irgendwelche Tipps wie man weitermachen koennte bzw. was man noch beachten muss?

Leicht könnt ihr zeigen, dass [mm] $a\IZ\subseteq [/mm] U$ gilt. Was verbleibt, ist [mm] $U\subseteq a\IZ$. [/mm] Ihr müsst also zeigen, dass die Existenz eines Element [mm] $x\in [/mm] U$ mit [mm] $x\notin a\IZ$ [/mm] im Widerspruch zur Wahl von $a$ steht. Das wiederum ist mit der Division durch Rest zu lösen, wie auch schon in den Tips angedeutet. Es ist ein kleiner Schritt und ihr habt die Aufgabe gelöst.

Den hier verwendeten Trick braucht man häufiger, z.B. beim Beweis dafür, dass manche Ringe Hauptidealringe ist (wie [mm] $(\IZ,+,\cdot [/mm] )$).


Liebe Grüße,
Hanno

Bezug
                
Bezug
Beweis Untergruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Fr 06.05.2005
Autor: michael7

Hallo Hanno,

danke fuer Deine Hilfe! Wir haben es jetzt hinbekommen.

Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]