Beweis der Umkehrabbildung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [4 Punkte]: Sei M [mm] \subset \IR [/mm] und f: M [mm] \rightarrow \IR [/mm] eine streng monoton wachsende Funktion. Zeigen Sie, dass die Umkehrfunktion [mm] f^{-1}: \mathcal{R}(f) \rightarrow [/mm] M existiert und streng monoton ist. |
Ich wollte nur fragen, ob meine Lösung richtig ist:
Seien a,b [mm] \in [/mm] M beliebig und gelte o. B. d. A. a<b. Weil f streng monoton wachsend ist, gilt: f(a) [mm] \in \mathcal{R}(f) [/mm] < f(b) [mm] \in \mathcal{R}(f) \forall [/mm] a,b [mm] \in [/mm] M. [mm] \Rightarrow [/mm] Auf [mm] \mathcal{R}(f) [/mm] ist eine Totalordnung definiert, denn [mm] \forall [/mm] f(x), f(y) [mm] \in \mathcal{R}(f): [/mm] (f(x) < f(y)) [mm] \vee [/mm] (f(y)<f(x)).
Sei nun [mm] f^{-1} [/mm] die Umkehrfunktion von f. Dann gilt: [mm] f^{-1}(m)=n \Leftrightarrow [/mm] f(n)=m laut Definition. Also gilt a [mm] \mapsto [/mm] f(a) [mm] \Leftrightarrow f^{-1}(f(a)) \mapsto [/mm] a [mm] \Rightarrow [/mm] Zu jedem f(a) [mm] \in \mathcal{R}(f) [/mm] ordnet [mm] f^{-1} [/mm] ein a [mm] \in [/mm] M zu. Da f streng monoton wachsend ist, gilt [mm] f^{-1} [/mm] ordnet jedem f(a) genau ein a zu, denn [mm] \forall [/mm] a,b [mm] \in [/mm] M: a<b. Dies bedeutet insbesondere: [mm] \exists f^{-1}: \mathcal{R}(f) \rightarrow [/mm] M mit: [mm] \forall [/mm] f(a),f(b) [mm] \in \mathcal{R}(f): [/mm] f(n)<f(m) [mm] \Rightarrow [/mm] n < m. Also ist [mm] f^{-1} [/mm] streng monoton. [mm] \Box
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:22 Do 09.01.2014 | Autor: | fred97 |
Deine Ideen sind gut, aber etwas kraus und verwirrend aufgeschrieben.
Da f streng wachsend ist, ist f injektiv. Das sieht man so: seien a,b [mm] \in [/mm] M und f(a)=f(b). Wäre a [mm] \ne [/mm] b, so können wir a<b annehmen. Dann wäre aber f(a)<f(b), wid.
Also ist a=b.
Da f injektiv ist, ex. [mm] f^{-1}:R(f) \to [/mm] M.
Seien nun u,v [mm] \in [/mm] R(f) und u<v. Es ex. a,b [mm] \in [/mm] M mit u=f(a) und v=f(b).
Aus u<v und der strengen Monotonie von f folgt a<b, also
[mm] f^{-1}(u)=a
FRED
|
|
|
|
|
Danke für die schnelle Antwort. Irgendwie habe ich noch Probleme damit, die Dinge mathematisch Sauber auszudrücken, ich hoffe, dass kommt mit der Zeit.
Eines verstehe ich noch nicht ganz: Wieso folgt aus der Injektivität, dass dann die Umkehrfunktion existiert. Muss ich das nicht noch zeigen? Ich finde leider im Skript keinen vergleichbaren Satz dazu. Lediglich bei Bijektivität weiß ich es.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:02 Do 09.01.2014 | Autor: | fred97 |
> Danke für die schnelle Antwort. Irgendwie habe ich noch
> Probleme damit, die Dinge mathematisch Sauber
> auszudrücken, ich hoffe, dass kommt mit der Zeit.
>
> Eines verstehe ich noch nicht ganz: Wieso folgt aus der
> Injektivität, dass dann die Umkehrfunktion existiert. Muss
> ich das nicht noch zeigen? Ich finde leider im Skript
> keinen vergleichbaren Satz dazu. Lediglich bei
> Bijektivität weiß ich es.
Zunächst hast Du eine streng monoton wachsende Funktion f:M [mm] \to \IR.
[/mm]
Diese ist injektiv. Wir def. eine weitere Funktion [mm] f_0:M \to [/mm] R(f), [mm] f_0(m):=f(m) [/mm] für m [mm] \in [/mm] M
[mm] f_0 [/mm] ist bijektiv. Damit ex.
[mm] f_0^{-1}:R(f) \to [/mm] M.
Viele , und so auch ich, sagen zu dieser Situation: " f hat eine Umkehrfunktion auf R(f) ". Statt [mm] f_0^{-1} [/mm] schreibt man dann einfach [mm] f^{-1}
[/mm]
FRED
|
|
|
|
|
Okay, danke. Also noch einmal zusammengefasst:
Seinen a,b [mm] \in [/mm] M und f(a) = f(b). Angenommen a [mm] \= [/mm] b, so können wir a<b annehmen
[mm] \Rightarrow [/mm] f(a) < f(b)
[mm] \Rightarrow [/mm] Widerspruch
[mm] \Rightarrow [/mm] a = b
[mm] \Rightarrow [/mm] f injektiv. Sei [mm] f_0: [/mm] M [mm] \rightarrow \mathcal{R}(f) [/mm] mit [mm] f_0(m) [/mm] := f(m) [mm] \forall [/mm] m [mm] \in [/mm] M. [mm] f_0 [/mm] ist bijektiv
[mm] \Rightarrow \exists f_0^{-1}: \mathcal{R}(f) \rightarrow [/mm] M
[mm] \Rightarrow [/mm] f hat Umkehrfunktion auf [mm] \mathcal{R}(f). [/mm] Schreibe statt [mm] f_0^{-1} [/mm] nun [mm] f^{-1}.
[/mm]
[mm] \Rightarrow \Exists f^{-1}: \mathcal{R}(f) \rightarrow [/mm] M. Seien nun u,v [mm] \in \mathcal{R}(f) [/mm] mit u<v.
[mm] \Rightarrow \exists [/mm] a,b [mm] \in [/mm] M: u = f(a) und v = f(b). Aus u<v und der strengen Monotonie von f folgt a<b, also [mm] f^{-1}(u)=a
[mm] \Rightarrow [/mm] f streng monoton [mm] \Box
[/mm]
Und das reicht für 4 Punkte?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:24 Do 09.01.2014 | Autor: | fred97 |
> Okay, danke. Also noch einmal zusammengefasst:
>
> Seinen a,b [mm]\in[/mm] M und f(a) = f(b). Angenommen a [mm]\=[/mm] b,
Du meinst a [mm] \ne [/mm] b
> so
> können wir a<b annehmen
> [mm]\Rightarrow[/mm] f(a) < f(b)
> [mm]\Rightarrow[/mm] Widerspruch
> [mm]\Rightarrow[/mm] a = b
> [mm]\Rightarrow[/mm] f injektiv. Sei [mm]f_0:[/mm] M [mm]\rightarrow \mathcal{R}(f)[/mm]
> mit [mm]f_0(m)[/mm] := f(m) [mm]\forall[/mm] m [mm]\in[/mm] M. [mm]f_0[/mm] ist bijektiv
> [mm]\Rightarrow \exists f_0^{-1}: \mathcal{R}(f) \rightarrow[/mm]
> M
> [mm]\Rightarrow[/mm] f hat Umkehrfunktion auf [mm]\mathcal{R}(f).[/mm]
> Schreibe statt [mm]f_0^{-1}[/mm] nun [mm]f^{-1}.[/mm]
> [mm]\Rightarrow \Exists f^{-1}: \mathcal{R}(f) \rightarrow[/mm] M.
> Seien nun u,v [mm]\in \mathcal{R}(f)[/mm] mit u<v.
> [mm]\Rightarrow \exists[/mm] a,b [mm]\in[/mm] M: u = f(a) und v = f(b). Aus
> u<v und der strengen Monotonie von f folgt a<b, also
> [mm]f^{-1}(u)=a
> [mm]\Rightarrow[/mm] f streng monoton [mm]\Box[/mm]
>
> Und das reicht für 4 Punkte?
Wenn ich nicht wüsste, dass Du alles beim FRED abgeschrieben hast, würde mir das reichen.
FRED
|
|
|
|