www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenBeweis durch Additionstheoreme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Beweis durch Additionstheoreme
Beweis durch Additionstheoreme < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:38 Mi 21.10.2009
Autor: Kackfisch

Aufgabe
Zeigen sie unter Anwendung der Additionstheoreme der Winkelfunktionen:

[mm] \cos(\alpha) + \cos(\beta) = 2 * \cos(\bruch{\alpha+\beta}{2}) * \cos(\bruch{\alpha-\beta}{2})[/mm]

[mm] \cos(\alpha) - \cos(\beta) = -2 * \sin(\bruch{\alpha+\beta}{2}) * \sin(\bruch{\alpha-\beta}{2})[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Diese Aufgabe lässt mich verzweifeln. Also bis jetzt habe ich immer mit folgender Idee angefangen:

[mm] \cos(\alpha) + \cos(\beta) = \cos(\bruch{\alpha}{2}+\bruch{\alpha}{2}) + \cos(\bruch{\beta}{2}+\bruch{\beta}{2})[/mm]

Nach Anwendung des 1. Additionstheorems erhalte ich etwas in der Art:

[mm]\cos^2(\bruch{\alpha}{2})-\sin^2(\bruch{\alpha}{2})+\cos^2(\bruch{\beta}{2})-\sin^2(\bruch{\beta}{2})[/mm]

Von dort aus habe ich versucht in verschiedene Wege weiter zu rechnen, aber leider war nichts wirklich von Erfolg gekrönt.
Ganz besonders schwer tuhe ich mich mit dem Ziel die beiden verschiedenen Winkel nachher im selben Argument zu haben.


Hat jemand von euch vielleicht einen Denkanstoß für mich, der mir weiterhelfen könnte?
Ist mein Grundansatz vieleicht absolut ungeschickt?
Ich danke schon mal für eure Antworten!

Kackfisch

        
Bezug
Beweis durch Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Mi 21.10.2009
Autor: abakus


> Zeigen sie unter Anwendung der Additionstheoreme der
> Winkelfunktionen:
>  
> [mm]\cos(\alpha) + \cos(\beta) = 2 * \cos(\bruch{\alpha+\beta}{2}) * \cos(\bruch{\alpha-\beta}{2})[/mm]
>  
> [mm]\cos(\alpha) - \cos(\beta) = -2 * \sin(\bruch{\alpha+\beta}{2}) * \sin(\bruch{\alpha-\beta}{2})[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
Nutze die Tatsache, dass zwei Größen (hier alpha und beta) stets gleich weit von ihrem gemeinsamen Mittelwert (hier [mm] \bruch{\alpha + \beta}{2} [/mm] entfernt sind.
Es gilt [mm] \alpha=\bruch{\alpha + \beta}{2} [/mm] + [mm] \bruch{\alpha - \beta}{2} [/mm] und
[mm] \beta=\bruch{\alpha + \beta}{2} [/mm] - [mm] \bruch{\alpha - \beta}{2} [/mm]
Wende auf dieses Ausdrücke die bekannen Additiontheoreme für den Kosinus an.
Gruß Abakus

>  
> Diese Aufgabe lässt mich verzweifeln. Also bis jetzt habe
> ich immer mit folgender Idee angefangen:
>  
> [mm]\cos(\alpha) + \cos(\beta) = \cos(\bruch{\alpha}{2}+\bruch{\alpha}{2}) + \cos(\bruch{\beta}{2}+\bruch{\beta}{2})[/mm]
>  
> Nach Anwendung des 1. Additionstheorems erhalte ich etwas
> in der Art:
>  
> [mm]\cos^2(\bruch{\alpha}{2})-\sin^2(\bruch{\alpha}{2})+\cos^2(\bruch{\beta}{2})-\sin^2(\bruch{\beta}{2})[/mm]
>  
> Von dort aus habe ich versucht in verschiedene Wege weiter
> zu rechnen, aber leider war nichts wirklich von Erfolg
> gekrönt.
>  Ganz besonders schwer tuhe ich mich mit dem Ziel die
> beiden verschiedenen Winkel nachher im selben Argument zu
> haben.
>  
>
> Hat jemand von euch vielleicht einen Denkanstoß für mich,
> der mir weiterhelfen könnte?
>  Ist mein Grundansatz vieleicht absolut ungeschickt?
>  Ich danke schon mal für eure Antworten!
>  
> Kackfisch


Bezug
                
Bezug
Beweis durch Additionstheoreme: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Do 22.10.2009
Autor: Kackfisch

@ Abakus:

Mit deinem Tipp war die Lösung kein Problem mehr!
Ich wäre aber wahrscheinlich von alleine nicht auf diesen guten Ansatz gekommen.
Vielen Dank an dieser Stelle!

Gruß Kackfisch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]