www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis einer Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Beweis einer Basis
Beweis einer Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 So 07.12.2008
Autor: Jana555555

Aufgabe
Es sei V ein VR über einem Körper K und U [mm] \subset [/mm] V ein echter UVR ( [mm] $U\ne [/mm] V$)
1. Man zeige, dass es eine Basis B von V mit $B [mm] \subset V\setminus [/mm] U$ gibt
2. Es seien [mm] W_1,W_2 [/mm] echter UVRe von V.
Gibt es eine Basis B mit $B [mm] \subset V\setminus(W1 \cup [/mm] W2)$ ?

Hallo!!

Ich weiß zwar was eine Basis ist: Mit den Vektoren einer Basis kann ich jeden Vektor aus V darstellen.
Auch weiß ich, dass B nur dann eine Basis ist wenn gilt:
1) sie ist ein Erzeugendensystem
2) besteht aus lin. unabhängigen Vektoren

Aber leider kann ich absolut nichts mit der Fragestellung anfangen.
Vielleicht kann mir jemand zumindest beim ersten schritt helfen, so dass ich die 2te Teilaufgabe allein lösen kann, da ich da vom Prinzip her das gleiche machen muss.

Vielen dank schon mal.

        
Bezug
Beweis einer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Di 09.12.2008
Autor: angela.h.b.


> Es sei V ein VR über einem Körper K und U [mm]\subset[/mm] V ein
> echter UVR ( [mm]U\ne V[/mm])
>  1. Man zeige, dass es eine Basis B
> von V mit [mm]B \subset V\setminus U[/mm] gibt


Hallo,

achte im eigenen Interesse darauf, daß Du Deine Fragen im richtigen Forum postest. Diese hat im Schulforum nichts zu suchen.

Oft hilft es, wenn man sich die Aufgabe erstmal an einem konkreten Beispiel anschaut.

Nehmen wir [mm] V:=\IR^3 [/mm] und [mm] U:=xy-Ebene=\{\vektor{x\\y\\0}| x,y\in \IR\}. [/mm]

Und? Wie schaut's aus?

Findest Du eine Basis so, daß keiner der Basisvektoren in U ist? Das will ich doch hoffen.

Überlegen kannst Du Dir dann folgndes:

Ergänze U durch W so, daß [mm] V=U\oplus [/mm] W.

U hat eine Basis, W hat eine Basis. Beide Basen zusammen sind eine Basis von V.

Wie kannst Du diese Basis jetzt so vermasseln, daß keiner der Vektoren mehr in W liegt?

Gruß v. Angela

P.S.: Gibt's bei 2. noch irgendwelche Bedingungen, oder ist die Aufgabe komplett?




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]