www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBeweis einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Beweis einer Matrix
Beweis einer Matrix < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Sa 08.09.2007
Autor: weststideitaly

Aufgabe
Zeigen Sie : Falls [mm] A\in\IR^{m\times n} [/mm] , [mm] x\in\IR^n [/mm] , [mm] y\in\IR^m [/mm] , so gilt : $(Ax,y)=(x,A^ty)$
Bemerkung: Der Beweis wird durch Benutzung des richtigen Formalismus sehr kurz. Stellen sie insbesondere sicher, dass die Aussage sinnvoll ist.

Hallo, dies ist eine Aufgabe aus dem Mathe Vorkurs einer Uni, an dem ich im Moment teilnehme. Ichmöchte nicht unbedingt die Lösung, nur dassmir bitte jemand auf die Sprünge hilft, danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Beweis einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 08.09.2007
Autor: angela.h.b.


> Zeigen Sie : Falls [mm]A\in\IR^{m\times n}[/mm] , [mm]x\in\IR^n[/mm] ,
> [mm]y\in\IR^m[/mm] , so gilt : [mm](Ax,y)=(x,A^ty)[/mm]
>  Bemerkung: Der Beweis wird durch Benutzung des richtigen
> Formalismus sehr kurz. Stellen sie insbesondere sicher,
> dass die Aussage sinnvoll ist.

Hallo,

ich nehme mal an, daß für [mm] a,b\in \IR^m [/mm] mit (a,b) gemeint ist [mm] (a,b):=a^{t}b [/mm]   (Matrixmultiplikation)

Um sicherzustellen, daß die Aufgabe überhaupt sinnvoll ist, muß Du zunächst prüfen, ob Du A und x multiplizieren kannst. Dazu mußt Du schauen, ob A soviele Spalten hat wie x Zeilen.

Zu prüfen ist weiter, ob Ax [mm] \in \IR^m, [/mm] denn sonst ist ja  (Ax,y) sinnlos.

Außerdem: paßt [mm] A^{t}y? [/mm] Kann man dieses Produkt bilden?
Und: ist [mm] A^{t}y\in \IR^n? [/mm] Denn sonst wäre [mm] (x,A^{t}y) [/mm] sinnlos.

Nach diesen Vorarbeiten starte mit

(Ax,y)= ...          ( hier die Def. verwenden für (a,b))
=...                    (verwende, daß [mm] (AB)^t=(B^tA^t) [/mm]  für alle Matrizen A,B, die man miteinandre multiplizieren kann)
=...                     (verwende das Assoziativgesetz für die Matrizenmultiplikation)
=...              (wenn Du soweit bist, kommst Du allein zum Ende.)

Gruß v. Angela

Bezug
                
Bezug
Beweis einer Matrix: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Sa 08.09.2007
Autor: nobsy

Mit (a,b) ist das Skalarprodukt der Vektoren a und b gemeint.
Folglich ist (Ax,y) das Skalarprodukt der Vektoren Ax und y, wobei der Vektor Ax durch Multiplikation der Matrix A mit dem Vektor x entsteht. x wird also durch Multiplikation mit A vom n-dimensionalen Raum in den m-dimensionalen Raum abgebildet und wird dann mit dem m-dimensionalen Vektor y multipliziert.
Dann dürfte zumindest die Fragestellung klar sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]