www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis eines Grenzwertsatzes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Beweis eines Grenzwertsatzes
Beweis eines Grenzwertsatzes < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis eines Grenzwertsatzes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:52 So 02.07.2006
Autor: didi_160

Aufgabe
Zeigen Sie: Ist [mm] f:(0,\infty) \to \IR [/mm] eine Funktion und  h: [mm] (0,\infty) \to \IR^+ [/mm]  eine stetig wachsende Funktion,  mit  [mm] \limes_{t\rightarrow\infty}h(t) [/mm] = [mm] \infty, [/mm] so folgt aus
[mm] \limes_{t\rightarrow\infty} [/mm] f(h(t)) = c auch   [mm] \limes_{t\rightarrow\infty}f(t) [/mm] = c.  

Die mathematische Aussage bei der Grenzwertberechnung anzuwenden traue ich mir zu.
Aber die Aussage beweisen kann ich nicht. Ich habe auch beim Stöbern in Büchern einen derartigen Beweis nicht gefunden, in meiner Vorlesungsmitschrift so wie so nicht.  Dort findet man nur eine endlose Aneinanderreihung von "Definitionen" und "Notizen". Derartige Beweise sind "Übungsaufgaben".
Aber ich will hier im Forum nicht schimpfen, sondern mich lieber an das lateinische Wörtchen "studere" erinnen, was frei übersetzt: "sich bemühen" bedeutet!

Wer unterstützt mch ein wenig bei meinen "Bemühungen" eine Lösung zu der Aufgabe zu finden???

Einen schönen sonnigen Sonntag und besten Dank im Voraus.
Gruß didi_160


        
Bezug
Beweis eines Grenzwertsatzes: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 So 02.07.2006
Autor: Hanno

Hallo Didi.

Zu zeigen ist, dass [mm] $\lim_{t\to\infty} [/mm] f(t) = c$ gilt. Was heißt das? Das heißt, dass für alle [mm] $\epsilon>0$ [/mm] ein [mm] $t_\epsilon$ [/mm] so existiert, dass [mm] $|f(t)-c|<\epsilon$ [/mm] für alle [mm] $t\geq t_{\epsilon}$ [/mm] gilt.

Weiterhin ist bekannt, dass es zu jedem solchen [mm] $\epsilon$ [/mm] ein [mm] $t_{\epsilon}$ [/mm] so gibt, dass [mm] $f(h(t))-c|<\epsilon$ [/mm] für alle [mm] $t\geq t_\epsilon$ [/mm] gilt.

Um nun beides in Verbindung zu bringen, musst du verwenden, dass wegen der Monotonie von $h$ die Äquivalenz [mm] $t\geq t_{\epsilon}\gdw h(t)\geq h(t_{\epsilon})$ [/mm] gilt und es wegen der Stetigkeit zu jedem [mm] $k\geq h(t_{\epsilon})$ [/mm] ein [mm] $t\geq t_{\epsilon}$ [/mm] mit $h(t)=k$ gibt.


Versuche nun, das alles zu einem Beweis zusammenzufügen.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Beweis eines Grenzwertsatzes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 So 02.07.2006
Autor: didi_160

Besten Dank Hanno,

jetzt habe ich erst mal einen Anfang.
Ich werde versuchen ob ich das hinkriege.

du schreibst:

> Um nun beides in Verbindung zu bringen, musst du verwenden,
> dass wegen der Monotonie von [mm]h[/mm] die Äquivalenz [mm]t\geq >t_{\epsilon}\gdw h(t)\geq h(t_{\epsilon})[/mm]
> gilt und es wegen der Stetigkeit zu jedem [mm]k\geq h(t_{\epsilon})[/mm]
> ein [mm]t\geq t_{\epsilon}[/mm] mit [mm]h(t)=k[/mm] gibt.

Wie ich beiden Aussagen verbinden soll weiß ich leider nicht.
gibst du mir noch einen Tipp?

Beste Grüße!
didi

Bezug
                        
Bezug
Beweis eines Grenzwertsatzes: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 So 02.07.2006
Autor: Hanno

Hallo Didi.

> Wie ich beiden Aussagen verbinden soll weiß ich leider nicht.
> gibst du mir noch einen Tipp?

Okay. Ich behaupte: für alle [mm] $t\geq h(t_{\epsilon})$ [/mm] gilt [mm] $|f(t)-c|<\epsilon$. [/mm] Kannst du dies beweisen?

Bedenke, wie [mm] $t_{\epsilon}$ [/mm] definiert war: so, dass für alle [mm] $t\geq t_{\epsilon}$ [/mm] stets [mm] $|f(h(t))-c|<\epsilon$ [/mm] gilt.

Beachte weiterhin die Äquivalenz, die ich in meinem vorigen Post nannte.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]