www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBeweis für Nullmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Beweis für Nullmatrix
Beweis für Nullmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für Nullmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Di 30.10.2007
Autor: SusanneK

Aufgabe
Sei A in [mm] M_{nn}(R) [/mm], wobei R ein kommutativer Ring ist.
Beweisen Sie, wenn [mm] Ax=\pmat{0\\.\\.\\0} [/mm] für alle [mm] x \in M_{n1}(R) [/mm] dann ist A die Nullmatrix.

Hallo,
wenn ich mal eine 2x2 Matrix wähle und sage, dass [mm] A=\pmat{a & b\\c & d} [/mm].
Dann wäre [mm] Ax=\pmat{ax+bx\\cx+dx} [/mm].
Mit dem Distributivgesetz, das in einem kommutativen Ring gilt, kann ich x ausklammern und erhalte [mm] Ax=\pmat{x(a+b)\\x(c+d)} [/mm].

Aber daraus kann ich doch folgern, dass A eben nicht die Nullmatrix sein muss, um [mm] Ax=\pmat{0\\.\\.\\0} [/mm] zu erhalten.
Wenn a=-b und c=-d ist, dann bekomme ich doch auch dieses Ergebnis.
Wo ist mein Denkfehler ?

Danke, Susanne.

        
Bezug
Beweis für Nullmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Di 30.10.2007
Autor: koepper

Hallo,

führe den Beweis besser umgekehrt:

Sei A nicht die Nullmatrix. Dann gibt es eine Spalte in A die nicht gleich Null ist....

jetzt bist du dran....

gib einen Vektor x an, so daß $ Ax [mm] \neq [/mm] 0$ ist.

Gruß
Will

Bezug
                
Bezug
Beweis für Nullmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Di 30.10.2007
Autor: SusanneK

Hallo Will,
vielen Dank für Deine Hilfe !
  

> führe den Beweis besser umgekehrt:
>  
> Sei A nicht die Nullmatrix. Dann gibt es eine Spalte in A
> die nicht gleich Null ist....
>  
> jetzt bist du dran....
>  
> gib einen Vektor x an, so daß [mm]Ax \neq 0[/mm] ist.

[mm] A=\pmat{1 & 0 \\0&0} [/mm]
Dann ist
[mm] Ax=\pmat{1x \\0} [/mm]

Ok, dann kommt nicht die Nullmatrix raus.
Aber was ist mit folgendem  Beispiel:
[mm] A=\pmat{1 & -1\\0&0} [/mm]
[mm] Ax=\pmat{1x-1x=0 \\0} [/mm]
Dann kommt auch [mm] Ax=\pmat{0 \\0} [/mm]
heraus und A ist keine Nullmatrix.
Ist es nicht so, wenn ich ein Beispiel dagegen finde, stimmt die Aussage nicht mehr ?

LG, Susanne.


Bezug
                        
Bezug
Beweis für Nullmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 30.10.2007
Autor: koepper

Hallo Susanne,

weißt du denn wie man Matrizen multipliziert?
Ein Vektor ist einfach eine Matrix mit einer Spalte (auch Spaltenvektor genannt),
wenn nicht ausdrücklich etwas anderes gesagt wird. (Es gibt auch Zeilenvektoren)

> Hallo Will,
>  vielen Dank für Deine Hilfe !
>    
> > führe den Beweis besser umgekehrt:
>  >  
> > Sei A nicht die Nullmatrix. Dann gibt es eine Spalte in A
> > die nicht gleich Null ist....
>  >  
> > jetzt bist du dran....
>  >  
> > gib einen Vektor x an, so daß [mm]Ax \neq 0[/mm] ist.
>  
> [mm]A=\pmat{1 & 0 \\0&0}[/mm]

In diesem Fall würde es zB der Vektor [mm] $\vektor{1 \\ 0}$ [/mm] tun.

>  Dann ist
>  [mm]Ax=\pmat{1x \\0}[/mm]

??????????

Setze $x := [mm] \vektor{x_1 \\ x_2 \\ \vdots \\ x_n}$ [/mm]

Gruß
Will

Bezug
                                
Bezug
Beweis für Nullmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Di 30.10.2007
Autor: SusanneK

Hallo Will,
nochmals danke für deine Hilfe !
  

> >  Dann ist

>  >  [mm]Ax=\pmat{1x \\0}[/mm]

[mm] Ax=\pmat{x_1\\0} [/mm]
  

> Setze [mm]x := \vektor{x_1 \\ x_2 \\ \vdots \\ x_n}[/mm]

Und jetzt ? Ich steh irgendwie auf dem Schlauch ?

Danke, Susanne.

Bezug
                                        
Bezug
Beweis für Nullmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Di 30.10.2007
Autor: Somebody


> Hallo Will,
>  nochmals danke für deine Hilfe !
>    
> > >  Dann ist

>  >  >  [mm]Ax=\pmat{1x \\0}[/mm]
>  
> [mm]Ax=\pmat{x_1\\0}[/mm]
>    
> > Setze [mm]x := \vektor{x_1 \\ x_2 \\ \vdots \\ x_n}[/mm]
>  
> Und jetzt ? Ich steh irgendwie auf dem Schlauch ?

Ist in diesem Spaltenvektor $x$ nur [mm] $x_i=1$ [/mm] und sind alle seine anderen Koordinaten gleich $0$, so ist das Matrixprodukt $A x$ nichts anderes als der $i$-te Spaltenvektor von $A$. Daher kann man also, indem man in dieser Überlegung $i$ von $1$ bis $n$ laufen lässt, zeigen, dass alle Spaltenvektoren von $A$ Nullvektoren $0$ sein müssen - und daher ist $A$ selbst die Nullmatrix.



Bezug
                                                
Bezug
Beweis für Nullmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Di 30.10.2007
Autor: SusanneK

Hallo Somebody
vielen Dank für Deine Hilfe !!

Ich glaube, jetzt ist der Groschen gefallen.
Diese Aussage gilt nur, wenn [mm] x_1 [/mm] ungleich [mm] x_2 [/mm] usw. sein kann.
Wenn x ein festes x wäre, müsste A nicht die Nullmatrix sein.

Stimmt das ?

LG, Susanne.

Bezug
                                                        
Bezug
Beweis für Nullmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Di 30.10.2007
Autor: Somebody


> Hallo Somebody
>  vielen Dank für Deine Hilfe !!
>  
> Ich glaube, jetzt ist der Groschen gefallen.
>  Diese Aussage gilt nur, wenn [mm]x_1[/mm] ungleich [mm]x_2[/mm] usw. sein
> kann.

Die Koordinaten des Vektors $x$ waren in der zu beweisenden Aussage in keiner Weise eingeschränkt.

>  Wenn x ein festes x wäre, müsste A nicht die Nullmatrix
> sein.

Nein, in diesem Falle gewiss nicht. Es ist ganz zentral für die Behauptung, dass $x$ ein beliebiger Vektor sein darf.
  Die in der obigen Beweisskizze verwendeten $n$ speziellen Vektoren, bei denen alle Koordinaten ausser der $i$-ten gleich $0$, die $i$-te aber gleich $1$ sind (kurz: für deren Koordinanten [mm] $x_k=\delta_{ki}$ [/mm] gilt), genügen offenbar schon, um die Behauptung $A=0$ zu beweisen.

>  
> Stimmt das ?

Um, .., ja, ...


Bezug
                                                                
Bezug
Beweis für Nullmatrix: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Di 30.10.2007
Autor: SusanneK

Vielen vielen Dank !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]