www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis für eine Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Beweis für eine Reihe
Beweis für eine Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für eine Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Fr 07.05.2010
Autor: erlkoenig

Aufgabe
Verwenden sie [mm] \sum_{n=1}^{\infty}\frac{1}{k^4}=\frac{\pi^4}{90} [/mm] um
[mm] \sum_{n=0}^{\infty}\frac{1}{(2k+1)^4}=\frac{\pi^4}{96} [/mm] zu beweisen.

Die erste Reihe habe ich schon bewiesen, aber nun heißt es ich soll mich auf die Aufgabe in der ich [mm] "\sum_{n=1}^{\infty}\frac{1}{k^4}=\frac{\pi^4}{90}" [/mm] bewiesen habe beziehen und damit auch die andere beweisen.

Ich muss gestehen ich habe keine Ahnung wo ich ansetzen soll. Für die erste habe ich die Parseval'sche Gleichung benutzt, aber für die neue Summe habe ich keine Funktion, so dürfte es mir ja etwas schwer fallen die Gleichung dort anzusetzen.

Ich hoffe ihr könnt mir helfen ;)

Lg
Erlkoenig

        
Bezug
Beweis für eine Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Fr 07.05.2010
Autor: Marcel

Hallo,

> Verwenden sie
> [mm]\sum_{n=1}^{\infty}\frac{1}{k^4}=\frac{\pi^4}{90}[/mm] um
> [mm]\sum_{n=0}^{\infty}\frac{1}{(2k+1)^4}=\frac{\pi^4}{96}[/mm] zu
> beweisen.
>  Die erste Reihe habe ich schon bewiesen, aber nun heißt
> es ich soll mich auf die Aufgabe in der ich
> [mm]"\sum_{n=1}^{\infty}\frac{1}{k^4}=\frac{\pi^4}{90}"[/mm]
> bewiesen habe beziehen und damit auch die andere beweisen.
>  
> Ich muss gestehen ich habe keine Ahnung wo ich ansetzen
> soll. Für die erste habe ich die Parseval'sche Gleichung
> benutzt, aber für die neue Summe habe ich keine Funktion,
> so dürfte es mir ja etwas schwer fallen die Gleichung dort
> anzusetzen.
>  
> Ich hoffe ihr könnt mir helfen ;)

benutze
[mm] $$\sum_{k=0}^{\infty}\frac{1}{(2k+1)^4}=\blue{\sum_{k=1}^{\infty}\frac{1}{k^4}-\sum_{k=1}^\infty \frac{1}{(2k)^4}}=\sum_{k=1}^{\infty}\frac{1}{k^4}-\frac{1}{2^4}\sum_{k=1}^\infty \frac{1}{k^4}=\ldots (\star)$$ [/mm]

(Beachte, dass im blauen Teil beide Reihen konvergieren.)

P.S.:
[mm] $\bullet$ [/mm] Bei der obigen Rechnung benutzt man (bspw.)

[mm] $$\left\{\frac{1}{k^4}: k \in \IN\right\}=\left\{\frac{1}{m^4}: m \in \IN \text{ und }m \text{ ungerade}\right\} \cup \left\{\frac{1}{n^4}: n \in \IN \text{ und }n \text{ gerade}\right\}\,,$$ [/mm]
wobei die Vereinigung rechterhand eine disjunkte ist. Bzw.
[mm] $$\left\{\frac{1}{m^4}: m \in \IN \text{ und }m \text{ ungerade}\right\}=\left\{\frac{1}{k^4}: k \in \IN \right\}\setminus\left\{\frac{1}{n^4}: n \in \IN \text{ und }n \text{ gerade}\right\}\,.$$ [/mm]

[mm] $\bullet$ [/mm] Bitte beachte, dass bei Deinen Reihen auch unter dem Summenzeichen der richtige Laufindex steht, also z.B.  nicht

[mm] $$\sum^{\infty}_{\red{n=1}}\frac{1}{k^4}\,,$$ [/mm]

sondern

[mm] $$\sum^{\infty}_{\blue{k=1}}\frac{1}{k^4}\,.$$ [/mm]

[mm] $\bullet$ [/mm] Zum weiteren Verlauf der Rechnung (siehe [mm] $(\star)$) [/mm] oben:
[mm] $\frac{1}{2^4}=\frac{1}{16}\,,$ [/mm] danach [mm] $\sum_{k=1}^\infty \frac{1}{k^4}$ [/mm] vorklammern, [mm] $1-\frac{1}{16}$ [/mm] ausrechnen und - wie gesagt - das Ergebnis

$$[mm]\sum_{k=1}^{\infty}\frac{1}{k^4}=\frac{\pi^4}{90}[/mm]$$

noch einsetzen. Danach kann man kürzen [mm] ($\frac{15}{16}*\frac{1}{90}=\frac{1}{16*6}=\frac{1}{96}$), [/mm] und schon steht das Gewünschte da.

Beste Grüße,
Marcel

Bezug
                
Bezug
Beweis für eine Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Fr 07.05.2010
Autor: erlkoenig

Oh, danke für die schnelle Antwort.

Ich war so vertieft in Integrale und weiß der Kuckuck was, das ich den einfachsten Weg nicht mehr gesehen hab.

Lg
Erlkoenig

Bezug
                        
Bezug
Beweis für eine Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Fr 07.05.2010
Autor: Marcel

Hallo,

> Oh, danke für die schnelle Antwort.
>  
> Ich war so vertieft in Integrale und weiß der Kuckuck was,
> das ich den einfachsten Weg nicht mehr gesehen hab.

das ist eine nicht unübliche Gefahr, die ich auch zur Genüge kenne ;-)

LG zurück,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]