www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBeweis lineare Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Beweis lineare Abbildung
Beweis lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis lineare Abbildung: Korrektur/Hilfe
Status: (Frage) beantwortet Status 
Datum: 17:34 So 29.05.2016
Autor: brover

Aufgabe 1
Beweisen oder widerlegen Sie folgende Aussagen:

(a) Die Abbildung f: [mm] \IZ_{2}^{2} \to \IZ_{2}, [/mm] (x,y) [mm] \mapsto x^2 [/mm] + [mm] y^2 [/mm] ist [mm] \IZ_{2}-linear [/mm]

Aufgabe 2
(b) Die Abbildung f: [mm] \IR^2 \to \IR, [/mm] f(x,y) [mm] \mapsto [/mm] xy ist [mm] \IR-linear [/mm] in beiden Komponenten, d.h. für jedes a [mm] \in \IR [/mm] sind die folgenden Funktionen [mm] \IR-linear: [/mm]
f(*,a): [mm] \IR \to \IR, [/mm] x [mm] \mapsto [/mm] f(x,a),
f(a,*): [mm] \IR \to \IR, [/mm] x [mm] \mapsto [/mm] f(a,x),

Zu (a) mein Ansatz evtl. Lösung:

f: [mm] \IZ_{2}^{2} \to \IZ_{2}, [/mm] (x,y) [mm] \mapsto x^2 [/mm] + [mm] y^2 [/mm] ist linear, da:

1. Sei [mm] (x_{1},y_{1}), (x_{2},y_{2}) \in \IZ_{2}^{2}. [/mm] Also gilt:
[mm] f((x_{1},y_{1})+(x_{2},y_{2})) [/mm]
= [mm] f(x_{1}+x_{2},y_{1}+y_{2}) [/mm]
= [mm] (x_{1}+x_{2})^2 [/mm] + [mm] (y_{1}+y_{2})^2 [/mm]
= [mm] (x_{1}^2 [/mm] + [mm] 2*x_{1}*x_{2} [/mm] + [mm] x_{2}^2) [/mm] + [mm] (y_{1}^2 [/mm] + [mm] 2*y_{1}*y_{2} [/mm] + [mm] y_{2}^2) [/mm]
= [mm] (x_{1}^2 [/mm] + [mm] 0*x_{1}*x_{2} [/mm] + [mm] x_{2}^2) [/mm] + [mm] (y_{1}^2 [/mm] + [mm] 0*y_{1}*y_{2} [/mm] + [mm] y_{2}^2) [/mm]
= [mm] (x_{1}^0 [/mm] + [mm] x_{2}^0) [/mm] + [mm] (y_{1}^0 [/mm] + [mm] y_{2}^0) [/mm]
= (1 + 1) + 1 + 1)
= 2 + 2 = 0 + 0
= 0
= 1 + 1 + 1 + 1 = 2 + 2 = 0 + 0
= [mm] x_{1}^0 [/mm] + [mm] x_{2}^0 [/mm] + [mm] y_{1}^0 [/mm] + [mm] y_{2}^0 [/mm]
= [mm] x_{1}^2 [/mm] + [mm] x_{2}^2 [/mm] + [mm] y_{1}^2 [/mm] + [mm] y_{2}^2 [/mm]
[mm] =f(x_{1},x_{2}) [/mm] + [mm] f(y_{1},y_{2}) [/mm]

2. Sei [mm] \lambda \in [/mm] K und (x,y) [mm] \in \IZ_{2}^{2}. [/mm] Dann gilt:
[mm] f(\lambda [/mm] *(x,y))
= [mm] f(\lambda *x,\lambda*y) [/mm]
= [mm] (\lambda *x)^2 [/mm] + [mm] (\lambda *y)^2 [/mm]
= [mm] (\lambda *x)^0 [/mm] + [mm] (\lambda *y)^0 [/mm]
= 1 + 1 = 2
= 0
= 0 * [mm] \lambda [/mm]
= 2 * [mm] \lambda [/mm]
= [mm] \lambda [/mm] * 1+ [mm] \lambda [/mm] * 1
= [mm] \lambda [/mm] * [mm] x^0 [/mm] + [mm] \lambda [/mm] * [mm] y^0 [/mm]
= [mm] \lambda [/mm] * [mm] x^2 [/mm] + [mm] \lambda [/mm] * [mm] y^2 [/mm]
= [mm] \lambda* (x^2 [/mm] + [mm] y^2) [/mm]
= [mm] \lambda [/mm] * f(x,y)

Somit ist es linear.


zu c)
Ist nicht linear, da:

f(3*(1,a)) = f(3,3a) = 3*3a = 9a [mm] \not= [/mm] 3a = 3*1a = 3* f(1,a)


        
Bezug
Beweis lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 So 29.05.2016
Autor: schotti

bei a) zeigst du f((x1,y1)+(x2,y2))=f(x1,x2)+f(y1,y2) statt f((x1,y1)+(x2,y2))=f(x1,y1)+f(x2,y2). ich denke aber, du kannst deine rechnung schnell korrigieren. einfach die quadrate nach dem wegfall des gemischten gliedes etwas umsortieren... (und alle die zeilen in der mitte einfach weglassen)

bei b) (ich nehme an, du meinst b) statt c)...) musst du doch linearität zweier funktionen R->R zeigen. du machst aber irgendwas mit einer funktion [mm] R^2 [/mm] -> R. ich würde meinen, die beiden funktionen x -> x*a und x -> a*x sind schon ziemlich linear...

Bezug
                
Bezug
Beweis lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 So 29.05.2016
Autor: brover

Oh ja danke (a) war dann ja fast richtig.

Und ja das sollte (b) heißen.

Also zu b wäre meine Lösung dann:
Ist linear, da:

Für f(*,a):

1. Seien [mm] x_{1},x_{2} \in \IR. [/mm] Also gilt:
[mm] f(x_{1} [/mm] + [mm] x_{2}) [/mm]
= [mm] f(x_{1} [/mm] + [mm] x_{2},a) [/mm]
= [mm] (x_{1} [/mm] + [mm] x_{2}) [/mm] * a
= [mm] x_{1} [/mm] * a + [mm] x_{2} [/mm] * a
= [mm] f(x_{1},a) [/mm] + [mm] f(x_{2},a) [/mm]
= [mm] f(x_{1}) [/mm] + [mm] f(x_{2}) [/mm]

2. Sei [mm] \lambda \in [/mm] K und x [mm] \in \IR. [/mm] D.g.:
[mm] f(\lambda*x) [/mm]
= [mm] f(\lambda*x,a) [/mm]
= [mm] \lambda*x*a [/mm]
= [mm] \lambda* [/mm] f(x,a)
= [mm] \lambda [/mm] * f(x)

Und das ganze Analog für f(a,*) nur die Positionen vertauscht.

Bezug
                        
Bezug
Beweis lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 So 29.05.2016
Autor: schotti

bei 1. und 2. noch jeweils die erste und die letzte zeile weglassen, dann sieht's gut aus. (sonst machst du ein kuddelmuddel mit einem f, welches dann für verschiedene funktionen stehen würde.) und allenfalls würde ich mich sogar getrauen, anstelle deiner rechnungen irgendwas in der art von "dass die funktionen x -> ax und x -> xa linear sind, ist trivial"...

Bezug
        
Bezug
Beweis lineare Abbildung: Vorsicht!
Status: (Antwort) fertig Status 
Datum: 21:22 So 29.05.2016
Autor: hippias

Die Rechnung ist nicht richtig, denn [mm] $a^{2}= a^{0}= [/mm] 1$ für beliebiges [mm] $a\in \IZ_{2}$ [/mm] gilt nicht. Beachte, dass der Exponent kein Element von [mm] $\IZ_{2}$ [/mm] ist, sondern nur als abkürzende Schreibweise benutzt wird.

Versuche also die Quadrate anders zu vereinfachen.


Bezug
                
Bezug
Beweis lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 So 29.05.2016
Autor: brover

Ich wüsste nicht, wie ich die Quadrate so vereinfach kann, dass gilt:

$ [mm] (\lambda \cdot{}x)^2 [/mm] $ + $ [mm] (\lambda \cdot{}y)^2 [/mm] $
= [mm] \lambda^2 [/mm] * [mm] (x^2+y^2) [/mm]
=
= $ [mm] \lambda [/mm] $ * $ [mm] (x^2 [/mm] $ + [mm] $y^2 [/mm] $)
= $ [mm] \lambda [/mm] $ * $ [mm] x^2 [/mm] $ + $ [mm] \lambda [/mm] $ * $ [mm] y^2 [/mm] $

Bezug
                        
Bezug
Beweis lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:37 Mo 30.05.2016
Autor: fred97


> Ich wüsste nicht, wie ich die Quadrate so vereinfach kann,
> dass gilt:
>  
> [mm](\lambda \cdot{}x)^2[/mm] + [mm](\lambda \cdot{}y)^2[/mm]
>  = [mm]\lambda^2[/mm] *
> [mm](x^2+y^2)[/mm]
>  =
>  = [mm]\lambda[/mm] * [mm](x^2[/mm] + [mm]y^2 [/mm])
>  = [mm]\lambda[/mm] * [mm]x^2[/mm] + [mm]\lambda[/mm] * [mm]y^2[/mm]


Wenn $a [mm] \in \IZ_2$, [/mm] so gibts für a nicht besonders viele Möglichkeiten.

Schau Dir damit [mm] a^2 [/mm] an.

FRED

Bezug
                                
Bezug
Beweis lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 Mo 30.05.2016
Autor: brover

Also a kann 0 oder 1 sein. Und dann folgt, dass entweder

Mit a = 0:
$ [mm] (\lambda \cdot{}x)^2 [/mm] $ + $ [mm] (\lambda \cdot{}y)^2 [/mm] $
= $ [mm] \lambda^2 [/mm] $ * $ [mm] (x^2+y^2) [/mm] $
= $ [mm] \lambda^2 [/mm] $ * (0 +0)
= $ [mm] \lambda [/mm] $ * $ [mm] (x^2 [/mm] $ + $ [mm] y^2 [/mm] $)
= $ [mm] \lambda [/mm] $ * $ [mm] x^2 [/mm] $ + $ [mm] \lambda [/mm] $ * $ [mm] y^2 [/mm] $

Mit a = 1:
$ [mm] (\lambda \cdot{}x)^2 [/mm] $ + $ [mm] (\lambda \cdot{}y)^2 [/mm] $
= $ [mm] \lambda^2 [/mm] $ * $ [mm] (x^2+y^2) [/mm] $
= $ [mm] \lambda^2 [/mm] $ * (1 + 1)
= $ [mm] \lambda [/mm] $ * $ [mm] (x^2 [/mm] $ + $ [mm] y^2 [/mm] $)
= $ [mm] \lambda [/mm] $ * $ [mm] x^2 [/mm] $ + $ [mm] \lambda [/mm] $ * $ [mm] y^2 [/mm] $

So richtig?

Bezug
                                        
Bezug
Beweis lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Mo 30.05.2016
Autor: angela.h.b.

Hallo,

mir ist gerade nicht ganz klar, was Du tun willst...

Du willst ja zeigen, daß [mm] f(\lambda(x,y))=\lambda [/mm] f(x,y) ist für alle [mm] \lambda, x,y\in \IZ_2. [/mm]

[mm] f(\lambda(x,y)) [/mm]

[mm] =f(\lambda [/mm] x, [mm] \lambda [/mm] y)

[mm] =(\lambda x)^2+ (\lambda y)^2 [/mm]

[mm] =\lambda^2x^2+\lambda^2y^2 [/mm]

= ???

Nun überlege Dir, was mit [mm] \lambda^2 [/mm] ist.
Für [mm] \lambda=0 [/mm] hat man [mm] \lambda^2=0, [/mm]
für [mm] \lambda=1 [/mm] hat man [mm] \lambda^2=1. [/mm]
Also bekommt man

[mm] =\lambda x^2+\lambda y^2 [/mm]
= und nun weiter

LG Angela




> Also a kann 0 oder 1 sein. Und dann folgt, dass entweder
>  
> Mit a = 0:
>  [mm](\lambda \cdot{}x)^2[/mm] + [mm](\lambda \cdot{}y)^2[/mm]
>  = [mm]\lambda^2[/mm] *
> [mm](x^2+y^2)[/mm]
>  = [mm]\lambda^2[/mm] * (0 +0)
>  = [mm]\lambda[/mm] * [mm](x^2[/mm] + [mm]y^2 [/mm])
>   = [mm]\lambda[/mm] * [mm]x^2[/mm] + [mm]\lambda[/mm] *
> [mm]y^2[/mm]
>  
> Mit a = 1:
>  [mm](\lambda \cdot{}x)^2[/mm] + [mm](\lambda \cdot{}y)^2[/mm]
>  = [mm]\lambda^2[/mm] *
> [mm](x^2+y^2)[/mm]
>  = [mm]\lambda^2[/mm] * (1 + 1)
>  = [mm]\lambda[/mm] * [mm](x^2[/mm] + [mm]y^2 [/mm])
>   = [mm]\lambda[/mm] * [mm]x^2[/mm] + [mm]\lambda[/mm] *
> [mm]y^2[/mm]
>  
> So richtig?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]