www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis nicht-triviale Lösung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Beweis nicht-triviale Lösung
Beweis nicht-triviale Lösung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis nicht-triviale Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Mo 27.11.2006
Autor: PixCell

Aufgabe
Sei K ein Körper, seien c1, . . . , cn [mm] \in [/mm] K, n [mm] \ge [/mm] 1. Zeigen Sie, dass das homogene lineare Gleichungssystem mit der Matrix
[mm] \pmat{ c_{1}-1 & c_{1} & ... & c_{1} \\ c_{2} & c_{2}-1 & ... & c_{2} \\ c_{n} & c_{n} & ... & c_{n}-1 } [/mm]

als einfacher Koeffizientenmatrix genau dann eine nicht-triviale Lösung besitzt, wenn
[mm] \summe_{i=1}^{n} c_{i} [/mm] = 1
gilt.
Hinweis: Beachten Sie, dass in allen Spalten der Matrix die Summe der Einträge gleich ist.

Hallo zusammen!
Ich bin mit dieser Aufgabe völlig überfordert, habe mir jedoch überlegt, ob es ein Ansatz wäre, wenn ich das Ganze folgendermaßen auffasse: Die obige Darstellung könnte man ja auch so verstehen, dass man von der gegebenen Matrix die Einheitsmatrix subtrahiert:

[mm] \pmat{ c_{1} & c_{1} & ... & c_{1} \\ c_{2} & c_{2} & ... & c_{2} \\ c_{n} & c_{n} & ... & c_{n} } [/mm] - [mm] \pmat{ 1 & 0 & ... & 0 \\ 0 & 1 & ... & 0 \\ 0 & 0 & ... & 1 } [/mm]

Klar ist mir auch, dass die Summe der Einträge in allen Spalten gleich ist, da ja immer die gleichen Koeffizienten addiert würden, nur irgendwo würde mal eine 1 abgezogen.

Aber was kann ich weiter tun? Über Hilfe wäre ich superfroh....

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Beweis nicht-triviale Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Mo 27.11.2006
Autor: Sashman

Moin PixCell!

Du hast hier doch eine [mm] \gdw [/mm] Äquivalenz zu zeigen. D.h. du mußt

1) [mm] \Leftarrow [/mm]
  zeigen das aus [mm] $\sum_{i=1}^n c_i=1$ [/mm] folgt das das LGS eine nichttriviale Lösung besitzt

2) [mm] \Rightarrow [/mm]
   das wenn das LGS eine nichttriviale Lösung besitzt  [mm] $\sum_{i=1}^n c_i=1$ [/mm] folgt

hoffe das dir das für einen neuen Versuch erst einmal hilft.

MfG
Sashman

Bezug
                
Bezug
Beweis nicht-triviale Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 27.11.2006
Autor: PixCell

Tausend Dank so weit erst mal! Werd das mal probieren und dann mal weitersehen ; )

Bezug
                        
Bezug
Beweis nicht-triviale Lösung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:14 Mo 27.11.2006
Autor: PixCell

...also irgenwie habe ich es immer noch nicht kapiert.

Was sagt denn eigentlich die Spaltensumme über die Lösungsmenge aus? Ich kenne die Bedeutung und Verwendung der Spaltensumme gar nicht. Darum gehts doch, oder?


Bezug
                                
Bezug
Beweis nicht-triviale Lösung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 29.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]