www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitBeweis nicht stetige Funkion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Beweis nicht stetige Funkion
Beweis nicht stetige Funkion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis nicht stetige Funkion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Do 11.02.2010
Autor: wilmi

Aufgabe
Meine Frage ist: wie erkenne ich bei der Anwendung der epsilon-delta Definition der Stetigkeit, dass eine Funktion nicht stetig ist.

Ich habe mir überlegt, dass vielleicht die Stelle a wegfällt...Bin mir aber nicht sicher.

Vielen Dank im vorraus

Wilmi

Ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis nicht stetige Funkion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Do 11.02.2010
Autor: fred97

Sei $f:D [mm] \to \IR$ [/mm] eine Funktion und $a [mm] \in [/mm] D [mm] \subseteq \IR$ [/mm]

f heißt in $ \ a$ stetig [mm] \gdw [/mm] zu jedem $ [mm] \varepsilon [/mm] > 0$ ex. ein [mm] $\delta [/mm] > 0$ mit:  

         $|f(x)-f(a)| < [mm] \varepsilon$ [/mm] für alle $x [mm] \in [/mm] D$ mit $|x-a|< [mm] \delta$. [/mm]

Somit ist f in $ \ a$ nicht stetig [mm] \gdw [/mm] es ex. ein [mm] $\varepsilon [/mm] > 0$ mit folgender Eigenschaft:

        zu jeden [mm] $\delta [/mm] > 0$ ex. ein [mm] $x_{\delta} \in [/mm] D$ mit [mm] $|x_{\delta}-a|< \delta$, [/mm] aber [mm] $|f(x_{\delta})-f(a)| \ge \varepsilon$ [/mm]

FRED

Bezug
                
Bezug
Beweis nicht stetige Funkion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Do 11.02.2010
Autor: wilmi

Kannst du mir ein Beispiel einer  einfachen Funktion nennen, die nicht stetig ist , ander ich das mal durchrechen kann? Wär nett!

Gruß wilmi

Bezug
                        
Bezug
Beweis nicht stetige Funkion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Do 11.02.2010
Autor: angela.h.b.


> Kannst du mir ein Beispiel einer  einfachen Funktion
> nennen, die nicht stetig ist , ander ich das mal
> durchrechen kann? Wär nett!
>  
> Gruß wilmi

Hallo,

eine sehr einfache Funktion ist

[mm] f(x:)=\begin{cases} -1, & \mbox{für } x<0 \\ 1, & \mbox{für } x\ge 0 \end{cases}. [/mm]

Gruß v. Angela

Bezug
                                
Bezug
Beweis nicht stetige Funkion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Do 11.02.2010
Autor: wilmi

Ok :) Danke an alle

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]