Beweis von Eisenstein < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:29 Sa 21.02.2015 | Autor: | sissile |
Aufgabe | Ich bin gerade am Beweis vom Kiterium von G. Eisenstein dran:
Sei R ein faktorieller Ring mit Quotientenkörper K, [mm] p(X)=\sum_{i=0}^n a_i X^i \in [/mm] R[X], grad p [mm] \ge [/mm] 1 und [mm] \alpha \in [/mm] R irreduzibel mit [mm] \alpha [/mm] | [mm] a_i [/mm] für 1 [mm] \le [/mm] i [mm] \le [/mm] n-1, [mm] \alpha \not| a_n [/mm] und [mm] \alpha^2 \not|a_0 [/mm] . Dann ist p [mm] \in [/mm] K[X] irreduzibel.
Beweis ist wie in Algebra von Jantzen & Schwermer:
Angenommen p wäre reduzibel in K[X]. Dann p=fg mit f,g [mm] \in [/mm] R[X], grad f < grad p, grad g < gradp (da p ist irreduzibel in R[X] [mm] \Rightarrow [/mm] p ist irreduzibel in K[X] in einem faktoriellen Ring R)
Es ist [mm] (\alpha) [/mm] Primideal von R [mm] \Rightarrow R/(\alpha) [/mm] ist Integritätsbereich. Ist [mm] \pi: [/mm] R [mm] \to R/(\alpha) [/mm] die übliche Projektion, so [mm] \overline{\pi}: [/mm] R[X] [mm] \to R/(\alpha) [/mm] [X], [mm] \overline{\pi}(\sum_{i=0}^n a_i X^i)=\sum_{i=0}^n \pi(a_i) X^i.
[/mm]
Wegen der Voraussetzung gilt [mm] \pi(a_n)X^n [/mm] = [mm] \overline{\pi} (p)=\overline{\pi}(f)\overline{\pi}(g). [/mm] Diese Zerlegung gilt auch in [mm] Q_{R/(\alpha)}[X]. [/mm] Da [mm] Q_{R/(\alpha)} [/mm] ein Hauptidealbereich und damit ein faktorieller Ring ist, folgt [mm] X|\overline{\pi}(f) [/mm] und [mm] X|\overline{\pi}(g) \Rightarrow \alpha| [/mm] f(0) und [mm] \alpha|g(0) \Rightarrow \alpha^2|f(0)g(0), [/mm] d.h. [mm] \alpha^2|a_0. [/mm] Wid. |
Hallo,
Ich habe zum Ende hin Probleme. Ich verstehe nicht warum folgt, dass:
[mm] X|\overline{\pi}(f) [/mm] und [mm] X|\overline{\pi}(g)
[/mm]
Es soll aus der Eindeutigkeit der Zerlegung in irreduzible Elemente(Eigenschaft des faktoriellen Rings) folgen, aber leider sehe ich das nicht.
Außerdem verstehe ich den nächsten Schritt nicht, wie also folgt:
[mm] \alpha| [/mm] f(0) und [mm] \alpha|g(0)
[/mm]
Ich würde mich über Erklärungen sehr freuen!
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:00 So 22.02.2015 | Autor: | hippias |
> Ich bin gerade am Beweis vom Kiterium von G. Einsenstein
> dran:
> Sei R ein faktorieller Ring mit Quotientenkörper K,
> [mm]p(X)=\sum_{i=0}^n a_i X^i \in[/mm] R[X], grad p [mm]\ge[/mm] 1 und [mm]\alpha \in[/mm]
> R irreduzibel mit [mm]\alpha[/mm] | [mm]a_i[/mm] für 1 [mm]\le[/mm] i [mm]\le[/mm] n-1, [mm]\alpha \not| a_n[/mm]
> und [mm]\alpha^2 \not|a_0[/mm] . Dann ist p [mm]\in[/mm] K[X] irreduzibel.
>
> Beweis ist wie in Algebra von Jantzen & Schwermer:
> Angenommen p wäre reduzibel in K[X]. Dann p=fg mit f,g
> [mm]\in[/mm] R[X], grad f < grad p, grad g < gradp (da p ist
> irreduzibel in R[X] [mm]\Rightarrow[/mm] p ist irreduzibel in K[X]
> in einem faktoriellen Ring R)
> Es ist [mm](\alpha)[/mm] Primideal von R [mm]\Rightarrow R/(\alpha)[/mm] ist
> Integritätsbereich. Ist [mm]\pi:[/mm] R [mm]\to R/(\alpha)[/mm] die
> übliche Projektion, so [mm]\overline{\pi}:[/mm] R[X] [mm]\to R/(\alpha)[/mm]
> [X], [mm]\overline{\pi}(\sum_{i=0}^n a_i X^i)=\sum_{i=0}^n \pi(a_i) X^i.[/mm]
>
> Wegen der Voraussetzung gilt [mm]\pi(a_n)X^n[/mm] = [mm]\overline{\pi} (p)=\overline{\pi}(f)\overline{\pi}(g).[/mm]
> Diese Zerlegung gilt auch in [mm]Q_{R/(\alpha)}[X].[/mm] Da
> [mm]Q_{R/(\alpha)}[/mm] ein Hauptidealbereich und damit ein
> faktorieller Ring ist, folgt [mm]X|\overline{\pi}(f)[/mm] und
> [mm]X|\overline{\pi}(g) \Rightarrow \alpha|[/mm] f(0) und
> [mm]\alpha|g(0) \Rightarrow \alpha^2|f(0)g(0),[/mm] d.h.
> [mm]\alpha^2|a_0.[/mm] Wid.
> Hallo,
> Ich habe zum Ende hin Probleme. Ich verstehe nicht warum
> folgt, dass:
> [mm]X|\overline{\pi}(f)[/mm] und [mm]X|\overline{\pi}(g)[/mm]
> Es soll aus der Eindeutigkeit der Zerlegung in irreduzible
> Elemente(Eigenschaft des faktoriellen Rings) folgen, aber
> leider sehe ich das nicht.
Sei allgemein $L$ ein Koerper und $S=L[X]$ ein Polynomring ueber $L$. Dann ist das Polynom $f=X$ irreduzibel (d.h. prim) in $S$.
Dies folgt z.B. aus Gradgruenden oder weil [mm] $S/(X)\cong [/mm] L$ etc.
>
> Außerdem verstehe ich den nächsten Schritt nicht, wie
> also folgt:
> [mm]\alpha|[/mm] f(0) und [mm]\alpha|g(0)[/mm]
Wenn [mm] $X\vert \bar{\pi}(f)$ [/mm] einmal erkannt ist, dann folgt sicherlich [mm] $\bar{\pi}(f)(0)=0$; [/mm] genauer [mm] $\bar{\pi}(f)(0_{R/(\alpha)})=0_{R/(\alpha)}$.
[/mm]
Nach Definition von [mm] $\bar{\pi}$ [/mm] gilt fuer alle [mm] $r\in [/mm] R$, dass [mm] $\pi(f(r))= \bar{\pi}(f)(\pi(r))$.
[/mm]
Demzufolge ist speziell [mm] $\pi(f(0))=0_{R/(\alpha)}$, [/mm] also [mm] $\alpha\vert [/mm] f(0)$. Ebenso fuer $g(0)$.
Als generelle leicht alternative Vorgehensweise schreibe ich $f= [mm] \sum \phi_{i}X^{i}$ [/mm] und $g= [mm] \sum \gamma_{i}X^{i}$, $\phi_{i}, \gamma_{i}\in [/mm] R$. Dann ist [mm] $\pi(a_{n})X^{n}= (\sum \pi(\phi_{i})X^{i})(\sum \pi(\gamma_{i})X^{i})$. [/mm] Ausmultiplizieren liefert, dass das Absolutglied der rechten Seite $= [mm] \pi(\phi_{0})\pi(\gamma_{0})$ [/mm] ist, welches nach der linken Seite $=0$ ist. Da [mm] $R/(\alpha)[X]$ [/mm] nullteilerfrei ist, folgt der Widerspruch.
>
> Ich würde mich über Erklärungen sehr freuen!
> LG,
> sissi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:10 Mo 23.02.2015 | Autor: | sissile |
Danke!!
> Sei allgemein $ L $ ein Koerper und $ S=L[X] $ ein Polynomring ueber $ L $. Dann ist das Polynom $ f=X $ irreduzibel (d.h. prim) in $ S $.
> Dies folgt z.B. aus Gradgruenden oder weil $ [mm] S/(X)\cong [/mm] L $ etc.
Der Beweis mittels Gradgründen ist klar. X=hg mit h,g [mm] \in [/mm] S. 1= grad(h)+grad(g). O.B.d.A. h(X)= a [mm] \in R\setminus\{0\} [/mm] und g(X)=bX+c mit b [mm] \in [/mm] R [mm] \setminus\{0\} \Rightarrow [/mm] X=abX+ac [mm] \Rightarrow [/mm] ab=1 [mm] \Rightarrow [/mm] a [mm] \in R^{\*}=R[X]^{\*}
[/mm]
Aber wie zeig ich den Isomorphismus [mm] S/(X)\cong [/mm] L?:
Wir haben den Einsetzhomorphismus angeschrieben als: [mm] \Phi_{\alpha} (p)=\sum_{i=0}^n a_i \alpha^i
[/mm]
Mein versuch war: [mm] \Phi_0: [/mm] S [mm] \to [/mm] L, p [mm] \mapsto [/mm] p(0)
Der Homomorphismus ist surjektiv mit [mm] \forall \alpha \in [/mm] L: [mm] \Phi_0(\alpha)=\alpha.
[/mm]
[mm] kern(\Phi_0)=?
[/mm]
p [mm] \in kern(\Phi_0) \Rightarrow p_0=0 [/mm] (Konstante Glied von p ist 0)
Jedoch ist (X) größer als der [mm] kern(\phi)..
[/mm]
> [mm] \pi(a_n)X^n= \overline{\pi} (p)=\overline{\pi}(f)\overline{\pi}(g).Diese [/mm] Zerlegung gilt auch in [mm] Q_{R/(\alpha)}[X]. [/mm] Da [mm] Q_{R/(\alpha)} [/mm] ein Hauptidealbereich und damit ein faktorieller Ring ist, folgt [mm] X|\overline{\pi}(f) [/mm] und [mm] X|\overline{\pi}(g).
[/mm]
Aber wie folgt dass nun aus X irreduibel(=prim)?
[mm] \pi(a_n)*X^{n-1} X=\pi(a_n)X^n= \overline{\pi}(f)\overline{\pi}(g)
[/mm]
[mm] \Rightarrow X|\overline{\pi}(f)\overline{\pi}(g)
[/mm]
Daraus würde doch nur folgen: [mm] X|\overline{\pi}(f) \vee X|\overline{\pi}(g)
[/mm]
Also ODER kein UND?
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:38 Mo 23.02.2015 | Autor: | hippias |
> Danke!!
>
> > Sei allgemein [mm]L[/mm] ein Koerper und [mm]S=L[X][/mm] ein Polynomring
> ueber [mm]L [/mm]. Dann ist das Polynom [mm]f=X[/mm] irreduzibel (d.h. prim)
> in [mm]S [/mm].
> > Dies folgt z.B. aus Gradgruenden oder weil
> [mm]S/(X)\cong L[/mm] etc.
>
> Der Beweis mittels Gradgründen ist klar. X=hg mit h,g [mm]\in[/mm]
> S. 1= grad(h)+grad(g). O.B.d.A. h(X)= a [mm]\in R\setminus\{0\}[/mm]
> und g(X)=bX+c mit b [mm]\in[/mm] R [mm]\setminus\{0\} \Rightarrow[/mm]
> X=abX+ac [mm]\Rightarrow[/mm] ab=1 [mm]\Rightarrow[/mm] a [mm]\in R^{\*}=R[X]^{\*}[/mm]
>
> Aber wie zeig ich den Isomorphismus [mm]S/(X)\cong[/mm] L?:
> Wir haben den Einsetzhomorphismus angeschrieben als:
> [mm]\Phi_{\alpha} (p)=\sum_{i=0}^n a_i \alpha^i[/mm]
> Mein versuch
> war: [mm]\Phi_0:[/mm] S [mm]\to[/mm] L, p [mm]\mapsto[/mm] p(0)
> Der Homomorphismus ist surjektiv mit [mm]\forall \alpha \in[/mm] L:
> [mm]\Phi_0(\alpha)=\alpha.[/mm]
> [mm]kern(\Phi_0)=?[/mm]
> p [mm]\in kern(\Phi_0) \Rightarrow p_0=0[/mm] (Konstante Glied von
> p ist 0)
> Jedoch ist (X) größer als der [mm]kern(\phi)..[/mm]
Nein, diese beiden Ideale sind gleich: für [mm] $f\in [/mm] R[X]$ gilt [mm] $X\vert f\iff [/mm] f(0)=0$.
>
>
> > [mm]\pi(a_n)X^n= \overline{\pi} (p)=\overline{\pi}(f)\overline{\pi}(g).Diese[/mm]
> Zerlegung gilt auch in [mm]Q_{R/(\alpha)}[X].[/mm] Da [mm]Q_{R/(\alpha)}[/mm]
> ein Hauptidealbereich und damit ein faktorieller Ring ist,
> folgt [mm]X|\overline{\pi}(f)[/mm] und [mm]X|\overline{\pi}(g).[/mm]
> Aber wie folgt dass nun aus X irreduibel(=prim)?
> [mm]\pi(a_n)*X^{n-1} X=\pi(a_n)X^n= \overline{\pi}(f)\overline{\pi}(g)[/mm]
>
> [mm]\Rightarrow X|\overline{\pi}(f)\overline{\pi}(g)[/mm]
> Daraus
> würde doch nur folgen: [mm]X|\overline{\pi}(f) \vee X|\overline{\pi}(g)[/mm]
>
> Also ODER kein UND?
Da $X$ prim ist, liefert die Gleichung [mm] $\pi(a_n)X^n= \overline{\pi}(f)\overline{\pi}(g)$, [/mm] dass dies der einzig moegliche Primteiler [mm] $\not\in R/(\alpha)$ [/mm] von [mm] $\bar{\pi}(f)$ [/mm] und [mm] $\bar{\pi}(g)$ [/mm] ist. Beachte, dass wegen [mm] $\alpha\not\vert a_{n}$ [/mm] nicht gilt, dass [mm] $\bar{\pi}(f)\in R/(\alpha)$ [/mm] oder [mm] $\bar{\pi}(g)\in R/(\alpha)$.
[/mm]
>
> LG,
> sissi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:09 Mo 23.02.2015 | Autor: | sissile |
Hallo,
> Nein, diese beiden Ideale sind gleich: für $ [mm] f\in [/mm] R[X] $ gilt $ [mm] X\vert f\iff [/mm] f(0)=0 $.
Ich dachte in (X) sind doch alle Polynome enthalten und im kern von [mm] \Phi_0 [/mm] nur die, wo der absolute Koeffizient 0 ist?
Für f [mm] \in [/mm] L[X]: f [mm] \in [/mm] (X) [mm] \Rightarrow [/mm] X|f [mm] \Rightarrow [/mm] 0|f(0) [mm] \Rightarrow f(0_L)=0_L \Rightarrow [/mm] f [mm] \in ker(\Phi_0)
[/mm]
umgekehrt für f [mm] \in [/mm] L[X] : f [mm] \in ker(\Phi_0) \Rightarrow f(0_L)=0_L [/mm] weiß ich nicht weiter.
> Da $ X $ prim ist, liefert die Gleichung $ [mm] \pi(a_n)X^n= \overline{\pi}(f)\overline{\pi}(g) [/mm] $, dass dies der einzig moegliche Primteiler $ [mm] \not\in R/(\alpha) [/mm] $ von $ [mm] \bar{\pi}(f) [/mm] $ und $ [mm] \bar{\pi}(g) [/mm] $ ist. Beachte, dass wegen $ [mm] \alpha\not\vert a_{n} [/mm] $ nicht gilt, dass $ [mm] \bar{\pi}(f)\in R/(\alpha) [/mm] $ oder $ [mm] \bar{\pi}(g)\in R/(\alpha) [/mm] $.
Mhm, leider verstehe ich die beiden Sätze überhaupt nicht warum sie gelten. Ich glaub da muss ich erstmal passen.
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:34 Di 24.02.2015 | Autor: | hippias |
> Hallo,
>
> > Nein, diese beiden Ideale sind gleich: für [mm]f\in R[X][/mm] gilt
> [mm]X\vert f\iff f(0)=0 [/mm].
> Ich dachte in (X) sind doch alle Polynome enthalten und im
> kern von [mm]\Phi_0[/mm] nur die, wo der absolute Koeffizient 0
> ist?
>
> Für f [mm]\in[/mm] L[X]: f [mm]\in[/mm] (X) [mm]\Rightarrow[/mm] X|f [mm]\Rightarrow[/mm]
> 0|f(0) [mm]\Rightarrow f(0_L)=0_L \Rightarrow[/mm] f [mm]\in ker(\Phi_0)[/mm]
>
> umgekehrt für f [mm]\in[/mm] L[X] : f [mm]\in ker(\Phi_0) \Rightarrow f(0_L)=0_L[/mm]
> weiß ich nicht weiter.
Sei $f= [mm] \sum \phi_{i}X^{i}$. [/mm] Aus $f(0)=0$, folgt [mm] $\phi_{0}=0$. [/mm] Ausklammern liefert $f= [mm] X\tilde{f}$.
[/mm]
>
> > Da [mm]X[/mm] prim ist, liefert die Gleichung [mm]\pi(a_n)X^n= \overline{\pi}(f)\overline{\pi}(g) [/mm],
> dass dies der einzig moegliche Primteiler [mm]\not\in R/(\alpha)[/mm]
> von [mm]\bar{\pi}(f)[/mm] und [mm]\bar{\pi}(g)[/mm] ist. Beachte, dass wegen
> [mm]\alpha\not\vert a_{n}[/mm] nicht gilt, dass [mm]\bar{\pi}(f)\in R/(\alpha)[/mm]
> oder [mm]\bar{\pi}(g)\in R/(\alpha) [/mm].
> Mhm, leider verstehe ich die beiden Sätze überhaupt nicht
> warum sie gelten. Ich glaub da muss ich erstmal passen.
In dem Quotientenkoerper $Q$ von [mm] $R/\alpha$ [/mm] hat z.B. eine Zerlegung in Primfaktoren $f= [mm] \prod \xi_{i}$. [/mm] Wegen [mm] $\pi(a_{n})X^{n}= \bar{\pi}(f)\bar{\pi}(g)$, [/mm] folgt [mm] $\xi_{i}\vert X^{n}$ [/mm] (in $Q[X]$). Da $X$ prim ist, ist [mm] $\xi_{i}$ [/mm] von der Gestalt $aX$. Also [mm] $\bar {\pi}(f)$ [/mm] ist von der Gestalt [mm] $aX^{m}$. [/mm] Analog fuer $g$.
>
> LG,
> sissi
|
|
|
|