www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisBeweis von lemma
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Beweis von lemma
Beweis von lemma < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von lemma: Brauche Hilfe beim Beweis
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:41 Mi 08.04.2009
Autor: Zwille

Aufgabe
Die abgeschlossene, konvexe Hülle einer kompakten Menge in einem Banachraum ist kompakt.

Wie gehe ich hier an den Beweis ran. Wo fange ich an und was muss ich alles bedenken bzw. worauf muss ich eingehen. Danke für alle Hilfestellungen

        
Bezug
Beweis von lemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Mi 08.04.2009
Autor: angela.h.b.


> Die abgeschlossene, konvexe Hülle einer kompakten Menge in
> einem Banachraum ist kompakt.
>  Wie gehe ich hier an den Beweis ran. Wo fange ich an

Hallo,

wie und wo Du beginnst, solltest eigentlich Du lt. Forenregeln uns zeigen,
am besten vorher sagen, was genau zu zeigen ist.

Sag doch erstmal, was Du Dir überlegt hast, wie Du begonnen hast und wo die Probleme liegen.

Falls Dir die Begriffe (abgeschlossen, konvex, Hülle, kompakt, Banachraum) nicht klar sind, solltest Du mit dem Heraussuchen der Definitionen beginnen.

Gruß v. Angela


> und
> was muss ich alles bedenken bzw. worauf muss ich eingehen.
> Danke für alle Hilfestellungen


Bezug
                
Bezug
Beweis von lemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Mi 08.04.2009
Autor: Zwille

Hallo,
ich weiß, dass ich die Probleme erläutern soll. Die Begriffe sind mir soweit alle klar, nur weiß ich leider keinen Ansatz. Das ist mein Problem.

Wir haben ja als Voraussetzung einen Banachraum, d.h. wir haben einen normierten Vektorraum, der vollständig ist, d.h. jede cauchyfolge in ihm konvergiert.
Z.z. Kompaktheit, d.h. jede Folge in der Menge hat ihren Grenzwert in der Menge.

Aber wie fange ich an?

Bezug
                        
Bezug
Beweis von lemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Mi 08.04.2009
Autor: fred97


> Hallo,
>  ich weiß, dass ich die Probleme erläutern soll. Die
> Begriffe sind mir soweit alle klar, nur weiß ich leider
> keinen Ansatz. Das ist mein Problem.
>  
> Wir haben ja als Voraussetzung einen Banachraum, d.h. wir
> haben einen normierten Vektorraum, der vollständig ist,
> d.h. jede cauchyfolge in ihm konvergiert.
>  Z.z. Kompaktheit, d.h. jede Folge in der Menge hat ihren
> Grenzwert in der Menge.


Unsinn ! Was sagtest Du: "Die Begriffe sind mir soweit alle klar"

Na, na, darf man lügen ?

Schau nochmal nach:"kompakt", "abgeschlossen", ................





FRED

>  
> Aber wie fange ich an?


Bezug
                                
Bezug
Beweis von lemma: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Mi 08.04.2009
Autor: Zwille

Dann formuliere ich es mal anders:
kann mir jemand erklären, wie genau eine abgeschlossene, konvexe hülle aussieht?

Def. der Konvexen Hülle und Def. abgeschlossene Hülle habe ich vor mir liegen, aber wie sieht dann eine abgeschlossene, konvexe hülle aus, wenn die konvexe hülle:

conv(X) = [mm] {\summe_{i=1}^{n} \lambda_{i} x_{j} : \summe_{i=1}^{n} \lambda_{j} = 1 , \lambda \in \IR_{+}, x_{j} \in X} [/mm]

und abgeschlossene Hülle:
[mm] \overline{X} [/mm] := X [mm] \cup \partial [/mm] X

Bezug
                                        
Bezug
Beweis von lemma: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mi 08.04.2009
Autor: fred97


> Dann formuliere ich es mal anders:
>  kann mir jemand erklären, wie genau eine abgeschlossene,
> konvexe hülle aussieht?


Das ist die abgeschlossene Hülle der konvexen Hülle.

Ist M also eine Teilmenge des Banachraumes, so ist die abgeschlossene konvexe Hülle von M =

                [mm] \overline{conv(M)} [/mm]

FRED

>  
> Def. der Konvexen Hülle und Def. abgeschlossene Hülle habe
> ich vor mir liegen, aber wie sieht dann eine
> abgeschlossene, konvexe hülle aus, wenn die konvexe hülle:
>  
> conv(X) = [mm]{\summe_{i=1}^{n} \lambda_{i} x_{j} : \summe_{i=1}^{n} \lambda_{j} = 1 , \lambda \in \IR_{+}, x_{j} \in X}[/mm]
>  
> und abgeschlossene Hülle:
>  [mm]\overline{X}[/mm] := X [mm]\cup \partial[/mm] X


Bezug
                                                
Bezug
Beweis von lemma: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Mi 08.04.2009
Autor: Zwille

Bleibt denn beim Bilden der konvexen Hülle die Kompaktheit (d.h. totalbeschränkt und vollständig, zumindest im normierten Raum/Banachraum) erhalten? Und wenn ja, wie zeige ich dieses?

Zur Vollständigkeit: Da ich nur den Abschluss betrachte und dieser im Banachraum liegt, der vollständig ist, ist die abgeschlossene konvexe hülle vollständig?


Bezug
                                                        
Bezug
Beweis von lemma: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Mi 08.04.2009
Autor: fred97


> Bleibt denn beim Bilden der konvexen Hülle die Kompaktheit
> (d.h. totalbeschränkt und vollständig, zumindest im
> normierten Raum/Banachraum) erhalten? Und wenn ja, wie
> zeige ich dieses?

Das ist doch im wesentlichen Deine Aufgabe !




>  
> Zur Vollständigkeit: Da ich nur den Abschluss betrachte und
> dieser im Banachraum liegt, der vollständig ist, ist die
> abgeschlossene konvexe hülle vollständig?


Nimm mal eine Cauchyfolge [mm] (x_n) [/mm] aus der abgeschlossenen konvexen Hülle .

Da ein Banachraum vorliegt hat [mm] (x_n) [/mm] einen Grenzwert [mm] x_0. [/mm] Da die abgeschlossene konvexe Hülle abgeschlossen ist, liegt [mm] x_0 [/mm] in dieser abgeschlossenen konvexen Hülle .


FRED


>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]