www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Beweis von z³=x
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Beweis von z³=x
Beweis von z³=x < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von z³=x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:42 Mo 03.11.2008
Autor: OlFie

Aufgabe
Beweisen Sie: Für jedes reelle x gibt es genau ein z sodass z³=x

Hallo,
Ich soll das hier beweisen, aber ich kriege nichteinmal einen Ansatz hin.
Kann mir dabei jemand? Zumindest auf den richtigen Weg zu kommen?





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis von z³=x: Antwort
Status: (Antwort) fertig Status 
Datum: 07:39 Di 04.11.2008
Autor: angela.h.b.


> Beweisen Sie: Für jedes reelle x gibt es genau ein z sodass
> z³=x
>  Hallo,
>  Ich soll das hier beweisen, aber ich kriege nichteinmal
> einen Ansatz hin.
>  Kann mir dabei jemand? Zumindest auf den richtigen Weg zu
> kommen?

Hallo,

[willkommenmr].

wie Du das machen sollst/kannst, hängt ein bißchen davon ab, in welchem Zusammenhang die Aufgabe aufgetaucht ist.
wenn mein Lösungsvorschlag überhaupt nicht paßt, müßtest Du Dich nochmal melden und erzählen, aus welchem Zusammenhang das kommt.

Ich taufe mal ein bißchen um: es geht also darum, daß Du zeigen sollst, daß für vorgegebenes [mm] a\in \IR [/mm] die Gleichung [mm] z^3=a [/mm] immer genau eine reelle Lösung hat.

Dies beinhaltet zweierlei:

1. Es gibt eine Lösung. Gib sie einfach an und zeig, daß es eine Lösung ist.

(Das klappt natürlich nur, wenn die dritte Wurzel bei Euch bereits bekannt ist. Ansonsten mußt Du eine Stelle angeben, an der der Funktionswert unterhalb und eine, an der er oberhalb der null liegt, und mit der Stetigkeit und dem Zwischenwertsatz argumentieren.)


2. Es gibt keine zwei Lösungen.

Hier kannst Du die Funktion [mm] f:\IR \to \IR [/mm] mit [mm] f(z):=z^3-a [/mm] betrachten.

Nimm an, daß die Gleichung zwei Lösungen hat. Dann hat f zwei Nullstellen [mm] z_1, z_2. [/mm]

Verwende nun die Monotonie von  [mm] f(z):=z^3-a. [/mm]

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]