www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweis zu Irrationalenzahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Beweis zu Irrationalenzahlen
Beweis zu Irrationalenzahlen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu Irrationalenzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Do 09.10.2008
Autor: Imbecile

Aufgabe 1
Zeige: Ist r rational und s irrational, so ist r+s irrational und für [mm] r\not= [/mm] 0 auch rs irrational

Aufgabe 2
Zeige: Sind a,b,c,d rational, [mm] ad-bc\not= [/mm] 0, s irrational, [mm] cs+d\not= [/mm] 0, so ist auch [mm] \bruch{as+b}{cs+d} [/mm] irrational

Aufgabe 3
Zeige: Zwischen je zwei rationalen Zahlen liegt stets eine Irrationalezahl.

Hallo

Diese 3 Beispiele befinden sich unter anderem auf meinem neuen Übungszettel.
Mein Problem ist jetzt, ich weiß einfach nicht wo ich wie ansetzten sollte!
Beweise sind leider meine große Schwachstelle.
Nein ich will keine vollständige Lösung! Nur ein ansatz oder eine Idee die mir hilft einen Ansatz zu finden wäre recht nett!

Auf jeden Fall Danke!
Lg,
Conny

        
Bezug
Beweis zu Irrationalenzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Do 09.10.2008
Autor: leduart

Hallo
1. Aufgabe : Widerspruchsbeweis:
angenommen r+s ist rational also ... jetz die bedingung fuer rational hinschreiben. dann muss rauskommen s auch ratinal!
aehnlich  2. aufgabe.
3. Wieder nimm an es liegen nur rationale dazwischen, und konstruier ne irrationale. ueberlegs erstmal an nemm konkreten Beispiel wie 0,1 und 0,100000001
zwischen den meisten Zahlen liegt schon mal ihr meist irrationales geometrisches Mittel.
Gruss leduart

Bezug
                
Bezug
Beweis zu Irrationalenzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Mo 13.10.2008
Autor: Imbecile

Danke für die Hilfe!
Mit deinem Tipp habe ich es schlussendlich geschafft!
Lg,
Conny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]