www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationBeweis zur Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Beweis zur Differenzierbarkeit
Beweis zur Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zur Differenzierbarkeit: Fehler in derAufgabenstellung?
Status: (Frage) beantwortet Status 
Datum: 10:28 Di 22.01.2008
Autor: devilsdoormat

Aufgabe
Es sei [mm]I := (-1,1)[/mm] und [mm]f:I \to \IR[/mm]. Man zeige Gibt es Zahlen [mm]K>0[/mm] und [mm]\alpha > 1[/mm] mit [mm]\left| f(x)\right| \le K \left|x\right|^{\alpha} [/mm] für alle [mm]x \in I[/mm], so ist f in 0 differenzierbar.

Hi,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Für gewöhnlich stimmen diese Aussagen auf den Übungsblättern ja, die man beweisen soll. Deshlab wundert es mich gerade, dass ich irgendwie ein Gegenbeispiel gefunden habe.

Die Betragsfunktion [mm]abs(x)[/mm] ist ja bekannterweise nicht differenzierbar in 0. Definiert man sie nun auf dem Interval I, so findet man doch für alle [mm]x \in I\{0}[/mm] nach Eudoxos (ich glaube der war es) passende [mm]\alpha[/mm] und [mm]K[/mm], so dass [mm]\left| f(x)\right| \le K \left|x\right|^{\alpha}[/mm] gilt. Auch für x=0 gilt bei der Betragsfunktion offensichtlich die Voraussetzung... das ist doch aber ein Widerspruch zu der Aussage die man beweisen soll... habe ich da jetzt irgend einen Denkfehler gemacht, oder soll man gerade das zeigen?

Danke schon mal im voraus

        
Bezug
Beweis zur Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Di 22.01.2008
Autor: angela.h.b.


> Es sei [mm]I := (-1,1)[/mm] und [mm]f:I \to \IR[/mm]. Man zeige Gibt es
> Zahlen [mm]K>0[/mm] und [mm]\alpha > 1[/mm] mit [mm]\left| f(x)\right| \le K \left|x\right|^{\alpha}[/mm]
> für alle [mm]x \in I[/mm], so ist f in 0 differenzierbar.

> Für gewöhnlich stimmen diese Aussagen auf den
> Übungsblättern ja, die man beweisen soll. Deshlab wundert
> es mich gerade, dass ich irgendwie ein Gegenbeispiel
> gefunden habe.

Hallo,

damit würde der Traum eines jeden Mathematikstudenten wahr...

Ich finde es gut, wie Du an die Aufgabe herangehst! Beispiele suchen, Behauptung teste, gucken ob es Gegenbeispiele gibt.


> Die Betragsfunktion [mm]abs(x)[/mm] ist ja bekannterweise nicht
> differenzierbar in 0. Definiert man sie nun auf dem
> Interval I, so findet man doch für alle [mm]x \in I \{0}[/mm] nach
> Eudoxos (ich glaube der war es) passende [mm]\alpha[/mm] und [mm]K[/mm], so
> dass [mm]\left| f(x)\right| \le K \left|x\right|^{\alpha}[/mm] gilt.

Die Voraussetzung Deiner Aufgabe ist anders:

Die Funktion f ist so, daß Du mit ein und demselben [mm] \alpha [/mm] und K auskommst, egal welche Stelle x Du gerade betrachtest. [mm] \alpha [/mm] und K sind hier fest und unabhängig v. x.

Gruß v. Angela




Bezug
                
Bezug
Beweis zur Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 Di 22.01.2008
Autor: pelzig

für [mm] $\alpha [/mm] = K = 1$ ist doch aber [mm] $|abs(x)|=|x|\le 1*|x|^1 [/mm] = |x|$ trivialerweise erfüllt, sogar für alle [mm] $x\in\IR$... [/mm] (?)

Bezug
                        
Bezug
Beweis zur Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Di 22.01.2008
Autor: angela.h.b.

Hallo,

[mm] \alpha [/mm] darf aber nicht =1 sein.

Gruß v. Angela

Bezug
                                
Bezug
Beweis zur Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Di 22.01.2008
Autor: devilsdoormat

Ja ok, die Aufgabenstellung habe ich tatsächlich verdreht. Aber dennoch. Man muss ja noch nicht einmal [mm]\alpha=1[/mm] wählen. Jedes [mm]\alpha<1[/mm] vergrößert doch sogar noch die Funktionswerte von [mm]abs(x)[/mm], da die Funktion ja nur auf [mm]I:=(-1,1)[/mm] definiert wurde. Wenn man jetzt ein [mm]K \ge 1[/mm] wählt hat man gar keinen Stress und die Bedingung ist für jedes [mm]x\inI[/mm] erfüllt... und das auch bei einem festen K und [mm]\alpha[/mm] wie ja gefordert wurde.

Hab ich da immer noch einen Fehler, der mir nicht auffällt?

Bezug
                                        
Bezug
Beweis zur Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 22.01.2008
Autor: angela.h.b.


> Ja ok, die Aufgabenstellung habe ich tatsächlich verdreht.
> Aber dennoch. Man muss ja noch nicht einmal [mm]\alpha=1[/mm]
> wählen. Jedes [mm]\alpha<1[/mm] vergrößert doch

Hallo,

gefordert ist a>1.

Gruß v. Angela

Bezug
                                                
Bezug
Beweis zur Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 Di 22.01.2008
Autor: devilsdoormat

hmm, ok, lesen sollte man zumindest können...

ich bedanke mich schon mal so weit und versuche mich jetzt mal an der Aufgabe in der Form, in der sie wahrscheinlich auch Sinn macht...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]