www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBeweise Erwartungswerte etc.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Beweise Erwartungswerte etc.
Beweise Erwartungswerte etc. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise Erwartungswerte etc.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Sa 24.02.2018
Autor: Jellal

Guten Abend,

ich habe ein paar kleine Beweisaufgaben, bei denen ich nicht weiß, was getan werden soll :(

Seien [mm] X,X_{1},...,X_{n} [/mm] unabhängig identisch verteilte reelle Zufallszahlen mit Verteilungsfunktion F.

Gesucht ist als erstes der Erwartungswert von [mm] Ind_{]-\infty,t]}(X) [/mm] mit t reell. Ind ist die Indikatorfunktion.

Der Erwartungswert ergibt sich doch dann mit:
[mm] E(Ind_{]-\infty,t]}(X))=\integral_{-\infty}^{t}{xf(x) dx} [/mm]
[mm] =\integral_{-\infty}^{t}{x F'(x) dx} [/mm]
= [mm] t*F(t)-\integral_{-\infty}^{t}{F(x)dx} [/mm]

Im letzten Schritt wurde partiell integriert.
Und was nun? Soll das schon alles sein :(?

Gruß

EDIT: Habe jetzt die Lösungen, siehe unten.

        
Bezug
Beweise Erwartungswerte etc.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Sa 24.02.2018
Autor: Jellal

Ich habe jetzt die jeweiligen kleinen Beweise gemacht und würde gerne eine Bestätigung von euch haben.

Seien [mm] X,X_{1},...,X_{n} [/mm] unabhängig identisch verteilt und reell, mit Verteilungsfunktion F.

a) Erwartungswert und Varianz der Zufallsvariablen [mm] Ind_{]-\infty,t]}(X) [/mm] und Kovarianz von [mm] Ind_{]-\infty,t]}(X) [/mm] und [mm] Ind_{]-\infty,s]}(X) [/mm] für t,s [mm] \in \IR. [/mm]

Oben habe ich schon den Erwartungswert versucht, aber einen Fehler im ersten Integral gemacht.

[mm] E(Ind_{]-\infty,t]}(X))=\integral_{-\infty}^{t}{f(x) dx}=F(t). [/mm]
[mm] V(Ind_{]-\infty,t]}(X))=E((Ind_{]-\infty,t]}(X))^{2})-F^{2}(t)=E(Ind_{]-\infty,t]}(X))-F^{2}(t)=F(t)-F^{2}(t)=F(t)(1-F(t)) [/mm]

[mm] Cov(Ind_{]-\infty,t]}(X),Ind_{]-\infty,s]}(X))=:Cov(T,S) [/mm]
[mm] =E(TS)-E(S)E(T)=E(Ind_{]-\infty,min(s,t)]}(X))-F(s)F(t) [/mm]
=F(min(s,t))-F(s)F(t).

b) Finde Verteilung der ZV [mm] Y_{n,t}= \summe_{i=1}^{n}Ind_{]-\infty,t]}(X_{i}), [/mm] t reell.

Nun ist [mm] Y_{n,t}=k [/mm] wenn k der [mm] X_{i} [/mm] in [mm] ]-\infty,t] [/mm] liegen.
Dies geschieht jeweils mit gleicher Wahrscheinlichkeit und unabhängig voneinander --> Binomialverteilung: [mm] Y_{n,t} [/mm] ~ [mm] B_{n,p} [/mm] mit p=F(t).

c)Für reelles t sind Erwartungswert und Varianz von [mm] F_{n,t}=1/n Y_{n,t} [/mm] gesucht.
Hier habe ich manuell gerechnet, aber wenn man weiß, dass [mm] Y_{n,k} [/mm] binomialverteilt ist, ist klar, dass [mm] E(F_{n,t})=F(t) [/mm] und [mm] V(F_{n,t})=F(t)(1-F(t)) [/mm] sind.

d)Man bestimme die Kovarianz von [mm] F_{n,t} [/mm] und [mm] F_{n,s} [/mm] für reelle s,t.
[mm] Cov(F_{n,t},F_{n,s})=E(F_{n,t}*F_{n,s})-E(F_{n,s})*E(F_{n,t}) [/mm]
[mm] =\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(Ind_{]-\infty,t]}(X_{i})Ind_{]-\infty,s]}(X_{j}))-F(S)F(T) [/mm]

Da die beiden X unabhängig sind und die einzelnen Erwartungswerte existieren, gilt E(a*b)=E(a)*E(b).

[mm] ...=\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(Ind_{]-\infty,t]}(X_{i}))E(Ind_{]-\infty,s]}(X_{j}))-F(S)F(T) [/mm]
= [mm] \bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}P(]-\infty,t])P(]-\infty,s])-F(S)F(T) [/mm]
=F(S)F(T)-F(S)F(T)
=0

So, sorry für den langen Beitrag!

Bezug
                
Bezug
Beweise Erwartungswerte etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Sa 24.02.2018
Autor: Gonozal_IX

Hiho,

> [mm]E(Ind_{]-\infty,t]}(X))=\integral_{\-infty}^{t}{f(x) dx}=F(t).[/mm]
>  
> [mm]V(Ind_{]-\infty,t]}(X))=E((Ind_{]-\infty,t]}(X))^{2})-F^{2}(t)=E(Ind_{]-\infty,t]}(X))-F^{2}(t)=F(t)-F^{2}(t)=F(t)(1-F(t))[/mm]

Beides ist ok.

Kleine Fingerübung: Es gilt ja, dass die Varianz immer nichtnegativ ist. Ist sie Null, so ist die Zufallsvariable konstant.
Kannst du begründen, warum $F(t)(1-F(t)) [mm] \ge [/mm] 0$ gilt und $F(t)(1-F(t)) = 0$ nur, falls [mm] $1_{]-\infty,t]}(X)$ [/mm] konstant?

> [mm]Cov(Ind_{]-\infty,t]}(X),Ind_{]-\infty,s]}(X)=:Cov(T,S)[/mm]
>  [mm]=E(TS)-E(S)E(T)=E(Ind_{]-\infty,min(s,t)]}(X))-F(s)F(t)[/mm]
>  =F(min(s,t))-F(s)F(t).

[ok]

> b) Finde Verteilung der ZV [mm]Y_{n,t}= \summe_{i=1}^{n}Ind_{]-\infty,t]}(X_{i}),[/mm]
> t reell.
>  
> Nun ist [mm]Y_{n,t}=k[/mm] wenn k der [mm]X_{i}[/mm] in [mm]]-\infty,t][/mm] liegen.
>  Dies geschieht jeweils mit gleicher Wahrscheinlichkeit und
> unabhängig voneinander --> Binomialverteilung: [mm]Y_{n,t}[/mm] ~
> [mm]B_{n,p}[/mm] mit p=F(t).

[ok]

>  
> c)Für reelles t sind Erwartungswert und Varianz von
> [mm]F_{n,t}=1/n Y_{n,t}[/mm] gesucht.
>  Hier habe ich manuell gerechnet, aber wenn man weiß, dass
> [mm]Y_{n,k}[/mm] binomialverteilt ist, ist klar, dass
> [mm]E(F_{n,t})=F(t)[/mm] und [mm]V(F_{n,t})=F(t)(1-F(t))[/mm] sind.

[ok]

> d)Man bestimme die Kovarianz von [mm]F_{n,t}[/mm] und [mm]F_{n,s}[/mm] für
> reelle s,t.
>  
> [mm]Cov(F_{n,t},F_{n,s})=E(F_{n,t}*F_{n,s})-E(F_{n,s})*E(F_{n,t})[/mm]
>  
> [mm]=\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(Ind_{]-\infty,t]}(X_{i})Ind_{]-\infty,s]}(X_{j}))-F(S)F(T)[/mm]

Bis hierhin ist das ok

> Da die beiden X unabhängig sind und die einzelnen
> Erwartungswerte existieren, gilt E(a*b)=E(a)*E(b).

[notok]
Hier warst du etwas vorschnell… welche "beiden X"
Natürlich sind [mm] $X_i$ [/mm] und [mm] $X_j$ [/mm] nur unabhängig, wenn [mm] $i\not=j$ [/mm]
Du hast aber auch Summanden, bei denen $i=j$ gilt!
Dann solltest du noch aufpassen, Klein- und Großbuchstaben nicht zu verwechseln sowie am Ende nicht so vorschnell deine Summen zusammenzufassen… da darfst du also nochmal ran.

> So, sorry für den langen Beitrag!

Keine Ursache, wenn die immer so ausgearbeitet sind und du zukünftig die Indikatorfunktion nicht so komisch schreibst, passt das schon.

Gruß,
Gono

Bezug
                        
Bezug
Beweise Erwartungswerte etc.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Sa 24.02.2018
Autor: Jellal

Hallo Gono,

danke für die schnelle Antwort. Ich wollte noch Schönheitsfehler editieren, vor allem die großen S,T am Ende, aber da warst du schon am Antworten und zeitgleich konnte ich nicht editieren.

Zu der Fingerübung: F(t)(1-F(t))=0 für F(t)=0 oder F(t)=1.
F(t)=0 heißt [mm] P(]-\infty, [/mm] t])=0, das ist bei der rellen Zufallsvariable [mm] 1_]-\infty,t](X) [/mm] nur möglich für [mm] t-->-\infty, [/mm] womit die ZV konstant 0 wäre. F(t)=1 führt dann zu [mm] P(]-\infty,t])=1 [/mm] und daher [mm] t-->\infty [/mm] und damit ist die ZV konstant 1.


Zu meiner letzten Aufgabe: Ja, da habe ich nicht dran gedacht. Das wäre mich sicher auch in einer Klausur passiert...

[mm] Cov(F_{n,t},F_{n,s})=\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(1_{]-\infty,t]}(X_{i})1_{]-\infty,s]}(X_{j}))-F(S)F(T) [/mm]
[mm] =\bruch{1}{n^{2}}(\summe_{i=1}^{n}\summe_{j=1}^{n} _{i\not=j}P(]-\infty,t])P(]-\infty,s])+\summe_{i=1}^{n}E(1_]-\infty,t](X_{i})1_[-\infty,s](X_{i})))-F(s)F(t) [/mm]

Der E-Wert am Ende wurde vorher schon mal berechnet, also einsetzen liefert:

[mm] ...=1/n^{2} ((n^{2}-n)F(t)F(s)+n [/mm] F(min(s,t))) -F(s)F(t)
=1/n (F(min(s,t))-F(t)F(s))

So?

Bezug
                                
Bezug
Beweise Erwartungswerte etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 24.02.2018
Autor: Gonozal_IX

Hiho,


> Zu der Fingerübung: F(t)(1-F(t))=0 für F(t)=0 oder F(t)=1.

[ok]

Bevor ich nun ins Detail gehe zum Rest, eine allgemeine Anmerkung. Deine Grundidee ist (fast) richtig, deine Argumentation oder Notation unsauber.
Du wirst gleich sehen, wieso:

>  F(t)=0 heißt [mm]P(]-\infty,[/mm] t])=0

Nein: $F(t) = 0$ bedeutet $P(X [mm] \le [/mm] t) = P(X [mm] \in ]-\infty,t]) [/mm] = 0$

> das ist bei der rellen Zufallsvariable [mm]1_]-\infty,t](X)[/mm] nur möglich für [mm]t-->-\infty,[/mm] womit die ZV konstant 0 wäre.

Das ist falsch.
[mm]1_]-\infty,t](X)[/mm] ist dann konstant Null, wenn $X [mm] \not\in ]-\infty,t]$ [/mm]
Die Wahrscheinlichkeit, dass $X [mm] \in ]-\infty,t]$ [/mm] ist aber nach obiger Annahme $F(t) = 0$ gerade Null. Damit auch  [mm]1_]-\infty,t](X)[/mm].

Den anderen Fall kannst du mal selbst so versuchen…

> Zu meiner letzten Aufgabe: Ja, da habe ich nicht dran
> gedacht. Das wäre mich sicher auch in einer Klausur
> passiert...

Ist auch ein gern gemachter Fehler :-)

> [mm]Cov(F_{n,t},F_{n,s})=\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{j=1}^{n}E(1_{]-\infty,t]}(X_{i})1_{]-\infty,s]}(X_{j}))-F(S)F(T)[/mm]
>  [mm]=\bruch{1}{n^{2}}(\summe_{i=1}^{n}\summe_{j=1}^{n} _{i\not=j}P(]-\infty,t])P(]-\infty,s])+\summe_{i=1}^{n}E(1_]-\infty,t](X_{i})1_[-\infty,s](X_{i})))-F(s)F(t)[/mm]
>  
> Der E-Wert am Ende wurde vorher schon mal berechnet, also
> einsetzen liefert:
>  
> [mm]...=1/n^{2} ((n^{2}-n)F(t)F(s)+n[/mm] F(min(s,t))) -F(s)F(t)
>  =1/n (F(min(s,t))-F(t)F(s))
>  
> So?

Deutlich besser.

Gruß,
Gono

Bezug
                                        
Bezug
Beweise Erwartungswerte etc.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Sa 24.02.2018
Autor: Jellal

Da war ich wohl zu vorschnell.

Aber ist P(X [mm] \le [/mm] t) = P(X [mm] \in ]-\infty,t]) [/mm] nicht das gleiche wie [mm] P(]-\infty,t])? [/mm] Also wenn ich mit P die ganze Zeit [mm] P^{x} [/mm] meine. In den Rechnungen hatte ich ja auch immer P(Menge) geschrieben.

Aber ansonsten verstehe ich deine Aussage. Ich habe mit dem t rumgespielt, dabei ist das t ja als gegeben anzusehen.

Also F(t)=1 meint X ist zu 100% in [mm] ]-\infty,t]. [/mm] Dann ist [mm] 1_]-\infty,t](X)=1 [/mm] für alle Realisierungen von X.

Bezug
                                                
Bezug
Beweise Erwartungswerte etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 So 25.02.2018
Autor: Gonozal_IX

Hiho,

> Aber ist P(X [mm]\le[/mm] t) = P(X [mm]\in ]-\infty,t])[/mm] nicht das
> gleiche wie [mm]P(]-\infty,t])?[/mm] Also wenn ich mit P die ganze
> Zeit [mm]P^{x}[/mm] meine.

Also natürlich ist $P(X [mm][mm] \in ]-\infty,t])$ [/mm] im Allgemeinen nie dasselbe wie [mm]P(]-\infty,t])[/mm], egal welches W-Maß du nimmst.
Was natürlich gilt, ist $P(X [mm][mm] \in ]-\infty,t]) [/mm] = [mm] P^X(]-\infty,t])$, [/mm] wenn mit [mm] P^X [/mm] das Bildmaß bezeichnet wird.

Allerdings ist es allgemeiner Konsens, dass wenn man [mm] $E[\cdot]$ [/mm] und [mm] $P(\ldot)$ [/mm] verwendet, immer das W-Maß gemeint ist, unter dem man auch den Erwartungswert bildet. Und das dem Erwartungswert zugrundeliegende W-Maß ist eben P und nicht [mm] P^X [/mm]


> Also F(t)=1 meint X ist zu 100% in [mm]]-\infty,t].[/mm] Dann ist
> [mm]1_]-\infty,t](X)=1[/mm] für alle Realisierungen von X.

Penibel korrekt nur für $P$-fast alle Realisierungen, aber ansonsten passt das.

Gruß,
Gono

Bezug
                                                        
Bezug
Beweise Erwartungswerte etc.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 So 25.02.2018
Autor: Jellal

Achso, weil bei einer stetigen Verteilung die Wahrscheinlichkeit für Ereignisse, die sich auf einzelne Punkte beziehen =0?
Das heißt, n Realisierungen könnten in [mm] ]-\infty,t] [/mm] liegen, trotzdem wäre P=0 für das Ereignis, dass X darin liegt.

Bezug
                                                                
Bezug
Beweise Erwartungswerte etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 So 25.02.2018
Autor: Gonozal_IX

Hiho,

für eine stetige Verteilung ist das ein gutes Beispiel, ja.
Du hast ja aber keine weitere Informationen über die [mm] $X_i$ [/mm] angegeben, außer dass sie identisch verteilt und unabhängig sind, d.h. im Wesentlichen hängt das natürlich von dem gegebenen W-Maß $P$ ab.

Ein kleines Beispiel:

Seien die [mm] $X_i$ [/mm] schlicht die Identität auf [mm] $\IR$, [/mm] d.h. [mm] $X_i(\omega) [/mm] = [mm] \omega$ [/mm]

1.) Wählen wir nun als W-Maß $P = [mm] \lambda_{[0,1]}$, [/mm] d.h. das Borel-Lebesgue-Maß bzw. die Gleichverteilung auf $[0,1]$ so ist das Ereignis [mm] $X_i=\frac{1}{2}$ [/mm] eben nicht wahrscheinlicher als [mm] $X_i [/mm] = 2$ oder [mm] $X_i [/mm] = 0$.
Aus "Sicht" vom W-Maß gilt aber sogar [mm] $X_i [/mm] = [mm] X_i*1_{[0,1]}$, [/mm] d.h. wirklich relevant ist nur das, was auf [0,1] passiert, da der Rest eine [mm] $\lambd$a-Nullmenge [/mm] ist.

2.) Wählen wir als W-Maß jedoch $P = [mm] \delta_0$, [/mm] d.h. das Dirac-Maß in Null, so ist [mm] $X_i=0$ [/mm] das fast sichere Ereignis und damit deutlich "wahrscheinlicher" als die anderen beiden Ereignisse [mm] $X_i [/mm] = 2$ oder [mm] $X_i [/mm] = [mm] \frac{1}{2}$. [/mm] Analog gilt hier aus "Sicht" des W-Maßes [mm] $\delta_0$, [/mm] dass [mm] $X_i \equiv [/mm] 0$ also fast sicher konstant Null ist, da [mm] $\delta(\IR\setminus\{0\}) [/mm] = 0$.

Gruß,
Gono

Bezug
                                                                        
Bezug
Beweise Erwartungswerte etc.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 Fr 02.03.2018
Autor: Jellal

Danke dir für deine Antworten!

Gruß

Jellal

Bezug
        
Bezug
Beweise Erwartungswerte etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Sa 24.02.2018
Autor: Gonozal_IX

Hiho,

> Gesucht ist als erstes der Erwartungswert von
> [mm]Ind_{]-\infty,t]}(X)[/mm] mit t reell. Ind ist die
> Indikatorfunktion.

>  [mm]E(Ind_{]-\infty,t]}(X))=\integral_{-\infty}^{t}{xf(x) dx}[/mm]

[notok]
  

> EDIT: Habe jetzt die Lösungen, siehe unten.

unten steht nur leider nix. Das von dir bisher Geschriebene ist falsch.

Für die Indikatorfunktion verwende einfach eine 1… in deinem Fall also einfach [mm] $1_{]-\infty,t]}(X)$ [/mm]

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]