www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelBeweise mit  Skalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Beweise mit Skalarprodukt
Beweise mit Skalarprodukt < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise mit Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 14.03.2007
Autor: miniscout

Aufgabe
Ein Tetraeder ist eine dreiseitige Pyramide, bei der alle Kanten gleich lang sind.
Beiweisen Sie, dass zwei gegenüberliegende Kanten (rot) beim Tetraeder orthogonal sind.

Hallo!

Gegeben ist also:

$ | [mm] \vec{a} [/mm] | = | [mm] \vec{b} [/mm] | = | [mm] \vec{c} [/mm] |$

Und zu beweisen ist:

[mm] $\vec{c} [/mm] * [mm] (\vec{b} [/mm] - [mm] \vec{a}) [/mm] = 0$


Nur weiß ich nicht so recht, wie ich das machen soll. Kann mir jemand von euch helfen? Vermutlich gibt es noch mehr Voraussetzungen, auf die ich nicht komme.

Auf jeden Fall vielen Dank.

Ciao miniscout [read]





        
Bezug
Beweise mit Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Mi 14.03.2007
Autor: Zwerglein

Hi, Miniscout,

(1) Laut Definition des Skalarprodukts ist:

[mm] \vec{a}\circ \vec{b} [/mm] = [mm] a*b*cos(\phi), [/mm]

wobei [mm] \phi [/mm] der Winkel zwischen beiden Vektoren ist.

(2) Sind in Deinem Tetraeder die Vektoren alle gleich lang, dann schließen sie auch denselben Winkel ein (gleichseitige Dreiecke!).

(3) Nun zu Deinem Ansatz:

[mm] \vec{a} \circ (\vec{b}-\vec{c}) [/mm]

= [mm] \vec{a} \circ \vec{b} [/mm] - [mm] \vec{a} \circ \vec{c} [/mm]

= ...

Der Rest ist klar!

mfG!
Zwerglein

Bezug
                
Bezug
Beweise mit Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 14.03.2007
Autor: miniscout

Danke!

Ist folgender Beweiß also richtig?

geg.:
(1) [mm] $\vec{a}\circ \vec{b} [/mm] = [mm] a*b*cos(\phi)$ [/mm]
(2) a = b = c


[mm] $\vec{c} \circ (\vec{b}-\vec{a})$ [/mm]

$= [mm] \vec{c} \circ \vec{b} [/mm] - [mm] \vec{a} \circ \vec{c}$ [/mm]

$= [mm] b*c*cos(\phi) [/mm] - [mm] a*c*cos(\phi)$ [/mm]

$= [mm] c*cos(\phi)*(b-a)$ [/mm]

$= 0$


Gruß miniscout [read]


Bezug
                        
Bezug
Beweise mit Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mi 14.03.2007
Autor: Zwerglein

Hi, miniscout,

> Ist folgender Beweiß also richtig?
>  
> geg.:
> (1) [mm]\vec{a}\circ \vec{b} = a*b*cos(\phi)[/mm]
>  (2) a = b = c
>  
>
> [mm]\vec{c} \circ (\vec{b}-\vec{a})[/mm]
>  
> [mm]= \vec{c} \circ \vec{b} - \vec{a} \circ \vec{c}[/mm]
>  
> [mm]= b*c*cos(\phi) - a*c*cos(\phi)[/mm]
>  
> [mm]= c*cos(\phi)*(b-a)[/mm]
>  
> [mm]= 0[/mm]

Bis auf die Tatsache, dass man Beweis nicht mit "ß" schreibt,
alles [ok]

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]