www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBeweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Beweisen
Beweisen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:43 Sa 30.10.2010
Autor: Peter22

Aufgabe
Beweisen Sie, dass für alle [mm] n\in\IN [/mm] gilt
[mm] n!\le2(\bruch{n}{2})^{n} [/mm]

[mm] n!\le\bruch{n^{n}}{2^{n-1}} [/mm]
[mm] (n-1)!\le\bruch{1}{2^{n-1}} [/mm]

Ist das so weit richtig?
Kann ich jetzt die Vollständige Inuktion anwenden?
Danke schon mal im Voraus für eure Hilfe

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 So 31.10.2010
Autor: leduart

Hallo
Du hast nur die Formeln umgeschrieben, das leider falsch

1, für n=1 fesstellen ob es richtig ist
2. Ind. Vorraussetzung [mm] $n!\le\bruch{n^{n}}{2^{n-1}}$ [/mm]
daraus dabb die Ind.behauptung  [mm] $(n+1)!\le\bruch{(n+1)^{n+1}}{2^{n}}$ [/mm]

> Beweisen Sie, dass für alle [mm]n\in\IN[/mm] gilt
>  [mm]n!\le2(\bruch{n}{2})^{n}[/mm]
>  [mm]n!\le\bruch{n^{n}}{2^{n-1}}[/mm]
> $ [mm] (n-1)!\le\bruch{1}{2^{n-1}} [/mm] $

das ist falsch, richtig wäre $ [mm] (n-1)!\le\bruch{(n-1)^{n-1}}{2^{n-1}} [/mm] $

>  
> Ist das so weit richtig?

Nein du kannst von n auf n+1 schliessen, oder von n-1 auf n
in die formeln dann überall wo n steht entsprechend n+1 bze n-1 eintragen.
Gruss leduart


Bezug
                
Bezug
Beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mi 03.11.2010
Autor: Peter22

[mm] n!=\produkt_{i=1}^{n}i [/mm]

Induktions Anfang
n= 1
[mm] \produkt_{i=1}^{1}i=1 [/mm]
[mm] 2(\bruch{1}{2})^{1}=1 [/mm]

[mm] 1\le1 [/mm]

Ind. Schritt

[mm] n\mapston+1 [/mm]

[mm] \produkt_{i=1}^{n+1}i\le2(\bruch{n+1}{2})^{n+1}=2(\bruch{n+1}{2})^{n}(\bruch{n+1}{2})=(\bruch{n+1}{2})^{n}(n+1)=(n+1)(\bruch{n+1}{2})^{n} [/mm]

[mm] \produkt_{i=1}^{n+1}i=\produkt_{i=1}^{n}i*(n+1)\le2(\bruch{n}{2})^{n}(n+1)= [/mm] ... ?

So ist das soweit richtig?
Aber weiter komm ich einfach nicht.
Kann mir da jemand einen Tipp geben?


Bezug
                        
Bezug
Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Do 04.11.2010
Autor: fred97


> [mm]n!=\produkt_{i=1}^{n}i[/mm]
>  
> Induktions Anfang
>  n= 1
>  [mm]\produkt_{i=1}^{1}i=1[/mm]
>  [mm]2(\bruch{1}{2})^{1}=1[/mm]
>  
> [mm]1\le1[/mm]
>  
> Ind. Schritt
>  
> [mm]n\mapston+1[/mm]
>  
> [mm]\produkt_{i=1}^{n+1}i\le2(\bruch{n+1}{2})^{n+1}=2(\bruch{n+1}{2})^{n}(\bruch{n+1}{2})=(\bruch{n+1}{2})^{n}(n+1)=(n+1)(\bruch{n+1}{2})^{n}[/mm]

Beim ersten " [mm] \le [/mm] " verwendest Du , was zu zeigen ist !! So gehts nicht.


>  
> [mm]\produkt_{i=1}^{n+1}i=\produkt_{i=1}^{n}i*(n+1)\le2(\bruch{n}{2})^{n}(n+1)=[/mm]
> ... ?


Schon besser !


Jetzt zeige noch:  


                (*)    [mm] 2(\bruch{n}{2})^{n}(n+1) \le 2(\bruch{n+1}{2})^{n+1}(n+1) [/mm]

Durch einfache Äquivalenzumformungen sieht man:

         (*)   [mm] \gdw $(n+1)(n+1)^{n+1} \ge 2*n^n$ [/mm]

Die letzte Ungl. ist aber zweifelsohne richtig. Warum ?

FRED

>  
> So ist das soweit richtig?
>  Aber weiter komm ich einfach nicht.
>  Kann mir da jemand einen Tipp geben?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]