www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBeweisen einer Behauptung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Beweisen einer Behauptung
Beweisen einer Behauptung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen einer Behauptung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Di 12.11.2013
Autor: LMi

Aufgabe 1
ist k Element [mm] \IN [/mm]  und sind v1,v2,v3....vk Element [mm] \IR [/mm] linear abhängige Vektoren, so sind für jeden Vektor  xElement [mm] \IR [/mm] auch die Vektoren v1,v2,v3....vk, x  Element [mm] \IR [/mm] ^n linear abhängig

Aufgabe 2
b) und sind v1,v2....vk Element [mm] \IR^n [/mm] linear unabhängige Vektoren so sind auch die Vektoren v1,v2...vk-1 linear unabhängig.

So ich steh absolut vor einem Problem, beiweise habe ich mal gemacht, allerdings nicht so kompliziert. Weis überhaupt nicht wie ich anfangen soll.

Soll das bei a) bedeuten das wenn man einen Vektor mit x multiplizert das Ergebnis dann auch linear abhängig ist? Oder was soll das x nach dem vk bedeuten?  Könnte ich dann einfach ein Vektor hinschreiben und davor x*  und dann = 0  . Aber ein beweis wäre das ja nicht....


Liebe Grüße



        
Bezug
Beweisen einer Behauptung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Di 12.11.2013
Autor: Marcel

Hallo,

> ist k Element [mm]\IN[/mm]  und sind v1,v2,v3....vk Element [mm]\IR[/mm]
> linear abhängige Vektoren, so sind für jeden Vektor  
> xElement [mm]\IR[/mm] auch die Vektoren v1,v2,v3....vk, x  Element
> [mm]\IR[/mm] ^n linear abhängig

die Aufgabe macht so schlichtweg keinen Sinn - das Einzige, was mir da
richtig zu sein scheint, ist, dass $k [mm] \in \IN\,.$ [/mm] Tippe bitte mal die Aufgabenstellung
hier Wort für Wort ab, oder setze 'nen Link! (Übrigens betrachtet ihr sicher
hier stets [mm] $\IR^n$ [/mm] als ("üblichen") Vektorraum über [mm] $\mathbf{\IR}$?!) [/mm]

>  b) und sind v1,v2....vk Element [mm]\IR^n[/mm] linear unabhängige
> Vektoren so sind auch die Vektoren v1,v2...vk-1 linear
> unabhängig.

Hier meinst Du sicher:
Sind [mm] $v_1,...,v_k \in \IR^n$ [/mm] linear unabhängig, dann sind auch [mm] $v_1,...,v_{\red{\;k-1\;}}$ [/mm] linear unabhängig.
[mm] ($v_k-1$ [/mm] macht nämlich keinen Sinn!)

Das ist einfach:

Du weißt, dass für alle [mm] $\lambda_1,...,\lambda_k \in \IR$ [/mm] aus

    [mm] $\sum_{\ell=1}^k \lambda_k v_k=\textbf{0}$ [/mm] (rechterhand ist [mm] $\textbf{0}=\vektor{0\\0\\.\\.\\.\\0} \in \IR^n$ [/mm] gemeint)

schon [mm] $\lambda_1=...=\lambda_k=0$ ($\in \IR$) [/mm] folgt. (Übrigens muss $k [mm] \le [/mm] n$ sein,
wenn [mm] $v_1,...,v_k$ [/mm] linear unabhängig sein sollen (wollen) - warum?)

Sind nun [mm] $\tilde{\lambda}_1,...,\tilde{\lambda}_{k-1} \in \IR,$ [/mm] so setze

    [mm] $\lambda_\ell:=\tilde{\lambda}_\ell$ [/mm] für [mm] $\ell=0,...,k-1$ [/mm] und [mm] $\lambda_k:=0\,.$ [/mm]

Dann gilt

    [mm] $\sum_{\ell=1}^{k-1} \tilde{\lambda}_\ell v_\ell=\sum_{\ell=1}^{k-1} \lambda_\ell v_\ell=\sum_{\ell=1}^k \lambda_\ell v_\ell=\textbf{0}\,.$ [/mm]

Was folgt dann wegen der Voraussetzung?

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]