www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieBeziehung zwischen Primzahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Beziehung zwischen Primzahlen
Beziehung zwischen Primzahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beziehung zwischen Primzahlen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:58 Di 13.03.2012
Autor: wauwau

Aufgabe
Bestimme [mm] $q_1,q_2...q_k$ [/mm] primzahlen $k > 2$ sodass
[mm] $(q_1-1)(q_2-1)..(q_{k-1}-1)q_k [/mm] - [mm] q_1q_2q_{k-1}(q_k-1) [/mm] = 2$

Wie packt man so ein problem an?

        
Bezug
Beziehung zwischen Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Di 13.03.2012
Autor: reverend

Hallo wauwau,

keine Ahnung, wie man sowas grundsätzlicher angeht.

Ich würde ja immer erst mal ein bisschen probieren, was da eigentlich passiert, dann genauer nachschauen.

Unmöglich ist es jedenfalls nicht: [mm] q_1=5,\ q_2=7,\ q_3=3 [/mm] ist eine Lösung.
[mm] q_k [/mm] hat ganz offensichtlich eine Sonderrolle, die anderen können vertauscht werden.

Ich denke, dass es nur eine äußerst begrenzte Zahl von Lösungen geben wird.

Grüße
reverend


Bezug
                
Bezug
Beziehung zwischen Primzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Di 13.03.2012
Autor: reverend

Hallo nochmal,

[mm] q_1=13,\ q_2=67, q_3=11 [/mm] ist auch eine Lösung.

Lösungen mit k>3 kann es nicht geben.
Für k=3 sollte die Zahl der Lösungen m.E. endlich sein. Wenn das stimmt, dann liegt Dir hiermit höchstwahrscheinlich auch schon die Mehrheit der Lösungen vor. ;-)

Grüße
reverend


Bezug
                        
Bezug
Beziehung zwischen Primzahlen: warum?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Di 13.03.2012
Autor: Schadowmaster


> Lösungen mit k>3 kann es nicht geben.

Da würde mich ehrlich gesagt das "warum?" mal interessieren.
Was hast du gegen:
[mm] $p_1 [/mm] = 5$, [mm] $p_2 [/mm] = 7$, [mm] $p_3 [/mm] = 37$, [mm] $p_4 [/mm] = 3$?

oder auch $(7,7,11,3)$ ist eine Lösung...

lg

Schadow

PS: $(7,11,11,17,3)$ wäre etwa ein fünfstelliger.

Bezug
                                
Bezug
Beziehung zwischen Primzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Di 13.03.2012
Autor: reverend

Hallo Schadow,

> > Lösungen mit k>3 kann es nicht geben.
>
> Da würde mich ehrlich gesagt das "warum?" mal
> interessieren.
>  Was hast du gegen:
>  [mm]p_1 = 5[/mm], [mm]p_2 = 7[/mm], [mm]p_3 = 37[/mm], [mm]p_4 = 3[/mm]?

Äh, nichts. Vielleicht sollte ich mich wieder auf meine Sitzung konzentrieren statt auf den WLAN-Zugang. ;-)

> oder auch [mm](7,7,11,3)[/mm] ist eine Lösung...
>  
> lg
>  
> Schadow
>  
> PS: [mm](7,11,11,17,3)[/mm] wäre etwa ein fünfstelliger.

Der "schönste" dreistellige, den ich bisher gefunden habe, ist (277,613,191). Oder sonst (73,2557,71); (109,5779,107); (181,16111,179) etc. Es spricht nichts dafür, dass die Zahl solcher Tripel bzw. n-Tupel endlich ist. Es sah nur anfangs so aus...

Tja, damit wären wir also am Anfang der Aufgabe.

Grüße
reverend


Bezug
                                        
Bezug
Beziehung zwischen Primzahlen: ein paar Lösungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 Di 13.03.2012
Autor: Schadowmaster

So, damit mal alle, die Interesse haben, was zum rumspielen haben, hier ein paar Lösungen:
                           [5, 7, 3]
                          [13, 67, 11]
                         [67, 487, 59]
                        [277, 613, 191]
                        [463, 547, 251]
                        [571, 883, 347]


                         [5, 7, 37, 3]
                         [7, 7, 11, 3]
                       [37, 107, 131, 23]
                      [137, 283, 797, 83]


                       [7, 7, 13, 59, 3]
                       [7, 11, 11, 17, 3]


Die 3 und 4stelligen sind alle Lösungen für Primzahlen [mm] $\leq [/mm] 1000$, die 5stelligen mangels Rechenleistung nur für Primzahlen [mm] $\leq [/mm] 100$.

lg

Schadow

Bezug
                                                
Bezug
Beziehung zwischen Primzahlen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 Mi 14.03.2012
Autor: wauwau

Aufgabe
Mir fällt auf, dass bei allen Lösungen

[mm] $q_1q_2...q_{k-1}-2 [/mm] = [mm] q_k[q_1q_2...q_{k-1}-(q_1-1)(q_2-1)...(q_{k-1}-1)]$ [/mm] quadratfrei ist ("keinen Primfaktor zweimal enthält")


Zufall oder beweisbar?

Bezug
                                                        
Bezug
Beziehung zwischen Primzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:52 Do 15.03.2012
Autor: hippias

Als beweisbar habe ich ersteinmal nur Folgendes: Interessant ist nur der Fall, in dem alle Primzahlen $>2$ sind. Ist dabei [mm] $q_{k}\equiv_{4} [/mm] 1$, so muss $k= 2$ sein und die Loesungen der Gleichungen sind genau die Primzahlpaearchen. Gilt [mm] $q_{k}\equiv_{4} [/mm] -1$, so kann ich vorerst keine weiteren Aussagen treffen. Dass eine der Primzahlen $=2$ ist, ist nicht moeglich.

Bezug
                                                        
Bezug
Beziehung zwischen Primzahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 14.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Beziehung zwischen Primzahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 05.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]