www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitBijektivität bei Unstetigkeit?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Bijektivität bei Unstetigkeit?
Bijektivität bei Unstetigkeit? < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektivität bei Unstetigkeit?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Mo 14.04.2014
Autor: Flubber

Hallo! Mir ist neulich eine Frage gekommen, und da ich selbst noch keine Antwort finden konnte, dachte ich, ich frage einfach hier nach:
Können unstetige Funktionen bijektiv sein?

Voraussetzung für Bijektivität ist ja, dass die Funktion sowohl surjektiv als auch injektiv ist; dass jedes Element der Menge Y (wenn X in Y abgebildet wird) also zum Bild gehört und keines mehrfach angenommen wird. Das steht, so wie ich das sehe, nicht damit im Widerspruch, dass es Werte aus der Menge X geben kann, denen kein Y-Wert zugeordnet ist.
Allerdings soll sich aus der Bijektivität auch ergeben, dass die Mengen X und Y gleich groß sind, was bei einer solchen Unstetigkeit ja nicht mehr der Fall wäre. Gehört diese Aussage (dass beide Mengen gleich groß sind) mit zur Definition der Bijektivität? Und wenn nicht, kann eine unstetige Funktion dann bijektiv sein?

Ich hoffe, es ist mir gelungen, mich verständlich auszudrücken (und die Frage in dem richtigen Unterforum zu stellen)  ...
... um zum Schluss noch meine Newbie-Pflicht zu tun: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bijektivität bei Unstetigkeit?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mo 14.04.2014
Autor: UniversellesObjekt

Hallo,

Es gibt keinen Zusammenhang zwischen Bijektivität und Stetigkeit. Die Identität ist stetig und bijektiv, die Betragsfunktion ist stetig aber nicht bijektiv, die Abrundungsfunktion ist keines von beidem, die Abbildung, welche alle Elemente außer null invertiert und null selbst fest lässt, ist bijektiv aber nicht stetig.
Jeweils bezüglich [mm] $\IR [/mm] $ mit der üblichen Topologie.

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
Bijektivität bei Unstetigkeit?: Antwort
Status: (Antwort) fertig Status 
Datum: 06:07 Di 15.04.2014
Autor: fred97


> Hallo! Mir ist neulich eine Frage gekommen, und da ich
> selbst noch keine Antwort finden konnte, dachte ich, ich
> frage einfach hier nach:
>  Können unstetige Funktionen bijektiv sein?

Ja: Sei f:[0,1] [mm] \to [/mm] [0,1] def. durch

     f(x)=x  für x [mm] \in [/mm] (0,1), f(0)=1 und f(1)=0.


>  
> Voraussetzung für Bijektivität ist ja, dass die Funktion
> sowohl surjektiv als auch injektiv ist; dass jedes Element
> der Menge Y (wenn X in Y abgebildet wird) also zum Bild
> gehört und keines mehrfach angenommen wird. Das steht, so
> wie ich das sehe, nicht damit im Widerspruch, dass es Werte
> aus der Menge X geben kann, denen kein Y-Wert zugeordnet
> ist.
>  Allerdings soll sich aus der Bijektivität auch ergeben,
> dass die Mengen X und Y gleich groß sind, was bei einer
> solchen Unstetigkeit ja nicht mehr der Fall wäre. Gehört
> diese Aussage (dass beide Mengen gleich groß sind) mit zur
> Definition der Bijektivität?


"gleich groß"  wird mit Bijektivität definiert:

Sind  X und Y Mengen, so nennt man sie gleichmächtig, wenn es eine Bijektion von X auf Y gibt.

FRED


> Und wenn nicht, kann eine
> unstetige Funktion dann bijektiv sein?
>  
> Ich hoffe, es ist mir gelungen, mich verständlich
> auszudrücken (und die Frage in dem richtigen Unterforum zu
> stellen)  ...
>  ... um zum Schluss noch meine Newbie-Pflicht zu tun: Ich
> habe diese Frage in keinem Forum auf anderen Internetseiten
> gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]