www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenBild einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Bild einer Matrix
Bild einer Matrix < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:55 Di 02.12.2008
Autor: KGB-Spion

Aufgabe
Für welche Parameter t € R liegt der Vektor (3, -4, 6) im Bild der Matrix :

[mm] \pmat{ 1 & 2 & 2 \\ -2 & (t²-5) & -3 \\ 3 & (t²+5) & (t+6) } [/mm]    ?

Liebe User,

ich hock grad wieder an so ner Aufgabe (ja ich weiß - es ist 3.51) aber ich werde da irgendwie nicht schlau.

Ich habe da diesen Vektor und soll nun ein t bestimmen, sodass der Vektor "im Bild" sich befindet ? Wie denn ?

Was bedeutet das ? Etwa, dass ich eine Linearkombination bilden muss ?

Oh bitte helft mir :-)

        
Bezug
Bild einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:55 Di 02.12.2008
Autor: KGB-Spion

So ein mist - ich habe ins falsche Bereich gepostet :-(

Bezug
        
Bezug
Bild einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:01 Di 02.12.2008
Autor: schachuzipus

Hallo Denis,

> Für welche Parameter t € R liegt der Vektor (3, -4, 6) im
> Bild der Matrix :
>
> [mm]\pmat{ 1 & 2 & 2 \\ -2 & (t²-5) & -3 \\ 3 & (t²+5) & (t+6) }[/mm]
>    ?
>  Liebe User,
>
> ich hock grad wieder an so ner Aufgabe (ja ich weiß - es
> ist 3.51) aber ich werde da irgendwie nicht schlau.
>
> Ich habe da diesen Vektor und soll nun ein t bestimmen,
> sodass der Vektor "im Bild" sich befindet ? Wie denn ?
>
> Was bedeutet das ? Etwa, dass ich eine Linearkombination
> bilden muss ?

[ok] ja, aber welche? ;-)

Die Spaltenvektoren der Matrix spannen doch das Bild der Matrix auf!

Also musst du das LGS [mm] $\lambda\cdot{}\vektor{1\\-2\\3} [/mm] \ + \ [mm] \mu\cdot{}\vektor{2\\t^2-5\\t^2+5} [/mm] \ + \ [mm] \nu\cdot{}\vektor{2\\-3\\t+6} [/mm] \ = \ [mm] \vektor{3\\-4\\6}$ [/mm] lösen.

Dazu stelle die erweiterte Matrix [mm] $\pmat{ 1 & 2 & 2&\mid &3 \\ -2 & (t²-5) & -3 &\mid & -4\\ 3 & (t²+5) & (t+6)&\mid & 6 }$ [/mm] auf und bringe sie in ZSF.

Bei den Umformungen wirst du merken, für welche t der gegebene Vektor im Bild der Matrix liegt


>
> Oh bitte helft mir :-)

LG

schachuzipus


Bezug
                
Bezug
Bild einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Di 02.12.2008
Autor: KGB-Spion

Sooo - hab endlich meine Vorlesung aus - na gut - dann pack ichs mal an ...

Aber die Idee stimmt doch - wann immer die Frage auftaucht : Liegt der Vektor im Bild einer Matrix geht es um eine erweiterte Matrix - gell ?


Wie auch immer - Besten Dank und frohe Adventgrüße

euer KGB-Spion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]