www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBild einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Bild einer Matrix
Bild einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Do 03.06.2010
Autor: Bayer04

Aufgabe
Berechnen Sie eine Basis der linearen Hülle der Spaltenvektoren für A=
1 , -1, -5
3 ,  4,   6
-2,  2,  10

Hallo zusammen,
Ich komme bei dieser Aufgabe nicht wirklich weiter und hoffe ihr könnt mir da ein bisschen weiterhelfen.
Also, wir wissen ja dass die lineare Hülle der Spaltenvektoren einer Matrix auch als das Bild der Matrix bezeichnet wird).

D.h. ich berechne müsste zuerst das Bild berechnen. Doch was hat dann die Basis damit zu tun?
Im Internet habe ich nicht wirklich was hilfreiches gefunden.
Ich hoffe ihr könnt mir helfen :(

Ich danke im Voraus.
Mfg

        
Bezug
Bild einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Do 03.06.2010
Autor: max3000

Ich glaub die Aufgabe zielt darauf ab dass du eine Basis finden sollst, die nur 2 Vektoren beinhaltet, weil die sicherlich linear abhängig sind.


Prüfe also einfach mal nach ob du den dritten Vektor als Linearkombination der beiden anderen darstellen kannst. Wenn ja, würden die ersten beiden Vektoren eine Basis für den Bildraum bilden.

Suche also [mm] \lambda,\mu [/mm] so dass [mm] w=\lambda*u+\mu*v [/mm]

Bezug
                
Bezug
Bild einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Do 03.06.2010
Autor: Bayer04

es gibt leider kein [mm] \lambda [/mm] oder [mm] \mu [/mm] die diese Gleichung erfüllen.
D.h. keines der Vektoren lässt sch als LK der anderen darstellen.

Ich denke für das Bild der Matrix kann ich meine Ausgangsmatrix transponieren und anschließend Gauss anwenden.
Die Nicht-Null Zeilen wären dann das Bild von A.
DOch das ist sicherlich nicht die Lösung der Aufgabe ooder?
Gesucht ist doch irgendeine Basis -.-

hmm

Bezug
                        
Bezug
Bild einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Do 03.06.2010
Autor: ChopSuey

Moin,

du hast $\ A = [mm] \pmat{ 1 & -1 & -5 \\ 3 & 4 & 6 \\ -2 & 2 & 10 } [/mm] $

Du sollst eine Basis von $\ span [mm] \left( \vektor{ 1 \\ 3 \\ -2 }, \vektor{ -1 \\ 4 \\ 2 }, \vektor{ -5 \\ 6 \\ 10 } \right) [/mm] $ ermitteln.

Wende nun den Gauß-Algorithmus auf die Spalten an. Die nichtverschwindenden Zeilen sind linear maximal linear unabhängig und bilden eine Basis von $\ span [mm] \left( \vektor{ 1 \\ 3 \\ -2 }, \vektor{ -1 \\ 4 \\ 2 }, \vektor{ -5 \\ 6 \\ 10 } \right) [/mm] $

Zu deiner Ausgangsfrage: Die Spalten der Matrix $\ A $ erzeugen den Untervektorraum $\ im \ [mm] \varphi_A [/mm] $ des Zielbereichs der linearen Abbildung, durch die die Matrix eindeutig bestimmt ist.

Dieses Bild ist, wie du bereits sagst, einfach nur die lineare Hülle der Spaltenvektoren.

Gruß
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]