www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenBilden e. best. Umkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Bilden e. best. Umkehrfunktion
Bilden e. best. Umkehrfunktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilden e. best. Umkehrfunktion: Umkehrfunktion bilden
Status: (Frage) beantwortet Status 
Datum: 18:33 So 10.11.2013
Autor: meneman

Aufgabe
Bilde die Umkehrfunktion von f(x) = y = [mm] \bruch{ax}{bx + c} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, es geht um die Umkehrfunktion dieser Funktion, also muss ich alles von der rechten Seite auf die linke bringen.

Zuerst dachte ich mir, dass man das x auskammern sollte um den Bruch anschließnd zu kürzen.
Dann enfällt das x im Zähler und man erhät einen Doppelbruch.

y = [mm] \bruch{a}{b+ \bruch{c}{x}} [/mm] .

Jetzt hat man zwar nur noch ein x, jedoch fällt es mir trotzdem nicht leichter, diesen Bruch nach x aufzulösen.

Als nächstes könnte man beide seiten mit dem Nenner multiplizieren um diesen loszuwerden und hätte dann folgende Funktion.

by + [mm] \bruch{cy}{x} [/mm] = a

Aber vonhier aus erkenne ich immernoch keine Lösung, also weiß ich nicht so recht ob das der richtige Weg ist, oder ob es noch andere Vereinfachungsregeln gibt, die ich vergessen habe anzuwenden.

Ich hoffe ihr könnt mir helfen!

Danke im Vorraus.

MfG


        
Bezug
Bilden e. best. Umkehrfunktion: Hinweise
Status: (Antwort) fertig Status 
Datum: 18:40 So 10.11.2013
Autor: Loddar

Hallo meneman,

[willkommenmr] !!


> also muss ich alles von der rechten Seite auf die linke bringen.

Du scheinst das richtige zu meinen.

Besser formuliert: Du musst hier nach $x \ = \ ...$ umstellen.


> y = [mm]\bruch{a}{b+ \bruch{c}{x}}[/mm] .

[ok] Das ist doch gar keine schlechte Idee.


> by + [mm]\bruch{cy}{x}[/mm] = a

[ok] Bringe nun alle Terme ohne $x_$ auf die rechte Seite der Gleichung.

Anschließend kann man auf beiden Seiten der Gleichung den Kehrwert bilden.


Gruß
Loddar

Bezug
                
Bezug
Bilden e. best. Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 So 10.11.2013
Autor: meneman

Okay, Danke erstmal Loddar.

Also habe ich jetzt folgendes Herraus.

[mm] \bruch{cy}{x} [/mm] = a - by

Und nach bilden des Kehrwerts und multiplizieren des Nenners die Umkehrfunktion gebildet:

x = [mm] \bruch{cy}{a - by} [/mm]

Vielen dank, ich hoffe ich hab die richtige Forenfunktion für meinen Post benutzt.





Bezug
                        
Bezug
Bilden e. best. Umkehrfunktion: alles richtig
Status: (Antwort) fertig Status 
Datum: 19:16 So 10.11.2013
Autor: Loddar

Hallo meneman!


> Also habe ich jetzt folgendes Herraus.

>

> [mm]\bruch{cy}{x}[/mm] = a - by

>

> x = [mm]\bruch{cy}{a - by}[/mm]

[daumenhoch]


> ich hoffe ich hab die richtige Forenfunktion
> für meinen Post benutzt.

[daumenhoch]


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]