www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBildsequenz bzw Kernsequenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Bildsequenz bzw Kernsequenz
Bildsequenz bzw Kernsequenz < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bildsequenz bzw Kernsequenz: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 10:41 Mo 27.04.2009
Autor: Achtzig

Aufgabe
Zeigen Sie, dass die Bildsequenz abbricht, wenn V endlichdimensional ist, und, dass der
Abbruchindex der gleiche ist wie bei der Kernsequenz.

Also der Begriff der Kernsequenz war ja ein oder zwei Beiträge vorher schon diskutiert. also die bildsequenz ist das analoge dazu.

Zur Antwort auf die Aufgabe habe ich mir überlegt, das mit der Dimensionsformel zu beweisen, jedoch weiß ich noch nicht genau wie deshalb wärs gut wenn ihr mir da weiter helfen könntet.
da wir ja wissen, dass die Kernseuqenz ab einem bestimmten Fitting-Index stationör wird und die dim ker + dim Im = dim V sein muss, und die Sequenzen ja innerinander verschachtelt sind, muss das der gleiche Index sein. aber reicht das als Begründung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke schonmal

        
Bezug
Bildsequenz bzw Kernsequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Mo 27.04.2009
Autor: angela.h.b.


> Zeigen Sie, dass die Bildsequenz abbricht, wenn V
> endlichdimensional ist, und, dass der
>  Abbruchindex der gleiche ist wie bei der Kernsequenz.
>  Also der Begriff der Kernsequenz war ja ein oder zwei
> Beiträge vorher schon diskutiert. also die bildsequenz ist
> das analoge dazu.

Hallo,

prinzipell wäre es kein Fehler, hier nochmal aufzuschreiben, was mit "die Bildsequenz" gemeint ist...

>  
> Zur Antwort auf die Aufgabe habe ich mir überlegt, das mit
> der Dimensionsformel zu beweisen, jedoch weiß ich noch
> nicht genau wie deshalb wärs gut wenn ihr mir da weiter
> helfen könntet.
>  da wir ja wissen, dass die Kernseuqenz ab einem bestimmten
> Fitting-Index stationör wird und die dim ker + dim Im = dim
> V sein muss, und die Sequenzen ja innerinander
> verschachtelt sind, muss das der gleiche Index sein. aber
> reicht das als Begründung?

Was meinst Du mit "verschachtelt"?

Daß die Bildsequenz stationär wird, hast Du also schon gezeigt, und Du willst jetzt begründen, daß es derselbe Index ist wie bei der Kernsequenz, richtig?

Mit der Dimensionsformel hast Du schonmal das richtige Werkzeug in der Hand genommen - aber  so recht überzeugt bin ich noch nicht.

Mal angenommen, die Kernsequenz würde ab k stationär, und ich käme daher und würde sagen: die Bildsequenz wird aber  (schon/erst) bei l stationär.

Was würdest Du tun, um mich zu überzeugen?

Gruß v. Angela

Bezug
                
Bezug
Bildsequenz bzw Kernsequenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mo 27.04.2009
Autor: Achtzig

gute frage... hat das vielleicht was damit zu tun, dass die sequenzen unterräume voneinander sind? hat das vlt damit wa szu tun? das meinte ich eigentlich mit verschachtelt) aber so recht weiß ich nicht weiter

Bezug
                        
Bezug
Bildsequenz bzw Kernsequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Mo 27.04.2009
Autor: angela.h.b.


> gute frage... hat das vielleicht was damit zu tun, dass die
> sequenzen unterräume voneinander sind? hat das vlt damit wa
> szu tun?

Hallo,

ganz gewiß hat das etwas damit zu tun.

Ich weiß nun wirklich schlecht, wie ich Dir weiterhelfen soll, weil man ja nichts sieht von dem, was Du machst.

Versuch doch mal einen Beweis durch Widerspruch:

Voraussetzung: endlichdim VR V, lineare Abbildung f, Kernsequenz stationär ab k.
bereits zuvor gezeigt:  Bildsequenz stationär  ab einem m.

Annahme:
1. Fall: m<k: ...
2. Fall m>k: ...

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]