www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBinomialkoeff. mit Brüchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Binomialkoeff. mit Brüchen
Binomialkoeff. mit Brüchen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeff. mit Brüchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mi 16.01.2008
Autor: MasterEd

Aufgabe
a) Taylorreihenentwicklung von [mm] $(1+x)^m$ [/mm] für den Entwicklungspunkt $x=0$ bis zum 5. Glied.

b) Berechnung eines Näherungswertes für [mm] $\wurzel[3]{2}$. [/mm]

Hallo,

Aufgabe a) habe ich schon mal richtig. Da kommt raus:
[mm] $(1+x)^m\approx\summe_{i=0}^n\vektor{m \\ i} x^i$ [/mm]


Das Problem ist jetzt b). Um [mm] $\wurzel[3]{2}$ [/mm] zu berechnen, müsste ich ja $x=1$ und [mm] $m=\bruch{3}{2}$ [/mm]  in die Formel einsetzen. Aber wie kann ich Brüche in einen Binomialkoeffizienten einsetzen? Eigentlich ist der doch nur für ganzzahlige Werte definiert...

Vielen Dank für Eure Hilfe!

(Ich habe diese Frage nirgendwo sonst gestellt.)

        
Bezug
Binomialkoeff. mit Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mi 16.01.2008
Autor: bezauberndejeany

m muss hier nicht [mm] \bruch{3}{2}, [/mm] sondern [mm] \bruch{1}{3} [/mm] sein. Das  ist zwar auch keine gerade Zahl, aber den Binomialkoeffizienten kann man trotzdem damit ausrechnen, dann ist er eben

[mm] \bruch{\bruch{1}{3}*(\bruch{1}{3}-1)*(\bruch{1}{3}-2)*...*(\bruch{1}{3}-(k-1))}{k!} [/mm]

Bei 5 Gliedern ergibt sich dann

[mm] \wurzel[3]{2}=1+\bruch{1}{3}-\bruch{1}{9}+\bruch{5}{81}-\bruch{10}{243}=\bruch{302}{243}\approx1,242798 [/mm]

Bezug
                
Bezug
Binomialkoeff. mit Brüchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mi 16.01.2008
Autor: MasterEd

Hallo,

ja mit dem fehlerhaften m-Wert hattest Du natürlich recht, sorry.

Dass man den Binomialkoeffizienten so ausrechnen kann wie bei Dir, leuchtet mir ein. Aber dann muss ich ja die Faktoren aller Fakultäten einzeln berechnen und dann multiplizieren. Gibts da keine Formel? Die definierte Formel
[mm] $\vektor{n}{k}=\bruch{n!}{k!*(n-k)!}$ [/mm] funktioniert für nicht ganzzahlige Werte von n ja leider nicht.

Bezug
                        
Bezug
Binomialkoeff. mit Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mi 16.01.2008
Autor: Leopold_Gast

Da [mm]x=1[/mm] auf dem Rand des Konvergenzintervalls liegt, ist die Konvergenz, sofern sie überhaupt vorliegt (hast du das überprüft?), miserabel schlecht. Ich würde daher etwas anderes vorschlagen:

[mm]\sqrt[3]{2} = 2 \cdot 2^{-\frac{2}{3}} = 2 \cdot \left( \frac{1}{2} \right)^{\frac{2}{3}}[/mm]

Du kannst daher die binomische Reihe mit dem Exponenten [mm]\frac{2}{3}[/mm] und [mm]x = - \frac{1}{2}[/mm] nehmen. Das dürfte eine wesentlich schnellere Konvergenz bringen.

Was die Berechnung der Binomialkoeffizienten angeht. Da gibt es wohl keine einfachere Formel, jedenfalls nicht für den allgemeinen Fall.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]