Binomialtest < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 23:35 So 06.02.2011 | Autor: | friendy88 |
Hallo zusammen!
Ich habe eine eher triviale Frage zu dem Binomialtest. Und zwar verstehe ich nicht, wie ich den c Wert,für den ich die Nullhypothese verwerfe, berechne.
Wenn ich z.B. habe [mm] B_{24, 0.2} [/mm] = P(X [mm] \le [/mm] k) . Wie kann ich dann aus einer Tabelle c ablesen?
Wäre sehr dankbar für Hilfe!!
Gruß
|
|
|
|
> Hallo zusammen!
>
> Ich habe eine eher triviale Frage zu dem Binomialtest. Und
> zwar verstehe ich nicht, wie ich den c Wert,für den ich
> die Nullhypothese verwerfe, berechne.
> Wenn ich z.B. habe [mm]B_{24, 0.2}[/mm] = P(X [mm]\le[/mm] k) . Wie kann ich
> dann aus einer Tabelle c ablesen?
> Wäre sehr dankbar für Hilfe!!
>
> Gruß
Hallo friendy88 ,
obwohl dir die Frage als "eher trivial" erscheint:
gib doch bitte die Aufgabenstellung genau an - denn
sonst wissen wir beispielsweise gar nicht, was du als
Nullhypothese bezeichnest ! Und ich weiß auch nicht,
was du (oder möglicherweise "man") unter c versteh(s)t ...
LG Al-Chw.
|
|
|
|
|
Hallo,
danke erstmal für die Reaktion! Ich habe keine richtige Aufgabe, das entstammt einem Text, wobei es darum geht,dass ein Medikament getestet wird. Dieses neue Medikament muss besser sein als ein altes Medikament. Dieses wird an 24 Menschen getestet.
Es geht darum, dass für den Fehler 1.Art c kleiner als 5 % sein soll.
H0 : p ≤ 0.2 und H1 : p > 0.2
B _{24,0.2}
Jetzt grübel ich wie ich c bestimmen kann..Wäre froh über Hilfe!!
|
|
|
|
|
Hallo,
Du sagst uns immer noch nocht, was c ist. Ich vermute, dass es die Grenze des kritischen Bereichs ist, die Du aus der Tabelle ablesen willst.
Unter dieser Vorraussetzung:
Das hängt von Deiner Tabelle ab. Mit meinem Tafelwerk aus der Schule ist es z.B. gar nicht möglich, da eine Kettenlänge 24 nicht erfasst ist.
Für diese Aufgabe musst Du noch Näherungsmethoden für die Binomialverteilung lernen.
Gruß korbinian
|
|
|
|
|
Hallo,
ja c ist der kritische Wert. Dann steht in meinem Buch:
P(X > 7|H0) = 1 − P(X ≤ 7|H0) ≤ 1 − B24,0.2(7) = 1 − 0.91083 = 0.08917
P(X > 8|H0) = 1 − P(X ≤ 8|H0) ≤ 1 − B24,0.2(8) = 1 − 0.96383 = 0.03617
Wobei n=24 , Po= 0.2
alpha=0.05
Es muss ja gelten: P(X≤c-1 / p=p0) < 1-alpha
und
p(X≤c / P=p0) [mm] \ge [/mm] 1-alpha
Aber ich verstehe nicht wie ich auf die Werte 7 und 8 komme:(
Es handelt sich um einen rechtsseitigen oberen Test und ich habe eine Tabelle k bis 15.
Wäre seeeehr froh über Hilfe!!
|
|
|
|
|
> Hallo,
> ja c ist der kritische Wert. Dann steht in meinem Buch:
>
> P(X > 7|H0) = 1 − P(X ≤ 7|H0) ≤ 1 − B24,0.2(7) = 1
> − 0.91083 = 0.08917
> P(X > 8|H0) = 1 − P(X ≤ 8|H0) ≤ 1 − B24,0.2(8) = 1
> − 0.96383 = 0.03617
>
> Wobei n=24 , Po= 0.2
> alpha=0.05
> Es muss ja gelten: P(X≤c-1 / p=p0) < 1-alpha
> und
> p(X≤c / P=p0) [mm]\ge[/mm] 1-alpha
>
> Aber ich verstehe nicht wie ich auf die Werte 7 und 8
> komme:(
> Es handelt sich um einen rechtsseitigen oberen Test und
> ich habe eine Tabelle k bis 15.
> Wäre seeeehr froh über Hilfe!!
Guten Abend friendy88,
die Tabelle, in der du suchen musst, ist die der kumulierten
Binomialverteilung für n=24 und [mm] p_0=0.2 [/mm] . Die entsprechenden
Werte werden heute oft, auch in Taschenrechnern, mit
binomcdf(n,p,k) bezeichnet:
$\ binomcdf(n,p,k)\ =\ [mm] P(X\le [/mm] k)$
( bei Binomialverteilung mit den vorgegebenen Werten n und p )
in deinem Beispiel also mit binomcdf(24,0.2,k). Dabei kann das k
von 0 bis zu n laufen.
Um bei vorgegebenem Wert von [mm] \alpha [/mm] den "kritischen" Wert von k,
also dein c zu finden, suchst du in der entsprechenden Kolonne
der Tabelle (oder, falls n=24 in der gedruckten Tabelle nicht vorkommt,
in einer entsprechenden durch den Rechner erzeugten Liste) denjenigen
k-Wert, für welchen binomcdf(24,0.2,k) den Zahlenwert [mm] 1-\alpha [/mm] (in
deinem Bsp. also 1-0.05=0.95) gerade knapp übertrifft. Dieser
k-Wert ist dann der kritische Wert c, also hier [mm] c=k_{krit.}=8 [/mm] .
LG Al-Chw.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 06:51 Di 08.02.2011 | Autor: | friendy88 |
Vielen,vielen Dank!!
|
|
|
|