Binomialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | In einer Montage werden die Produkte A und B gefertigt. Der Abtransport erfolgt auf einer Fördereinheit für drei Produkte. Das Produkt A ist mit einer Wahrscheinlichkeit von P(A)=p auf der Fördereinheit, das Produkt B mit einer Wahrscheinlichkeit von P(B)=1-p.
Es ist die Wahrscheinlichkeit gesucht, dass A x=0,1,2,3 mal auf der Fördereinheit ist.<br>
|
<br>
Ich kann die Binomialverteilung anwenden [mm]P(X=x)= {{n \choose x}}p^x(1-p)^{n-x}[/mm] und komme auch auf die richtigen Ergebnisse.
Mich interessiert nun aber wie sich das [mm] {{n \choose k}}[/mm] herleitet. Nach meinem Mathebuch ist [mm] {{n \choose k}}[/mm] die Anzahl der Kombinationen k-ter Klasse von n Elementen. Als Beispiel sind dort vier Elemente a, b, c, d gegeben und es ließen sich ohne Wiederholung die Kombinationen 2-ter Klasse bilden: ab, ac, ad, bc, bd und cd bilden. Wenn man diese Kombinationen jeweils permutieren (2!) würde, dann ergeben sich die Variationen 2-ter Klasse von 3 Elementen ohne Wiederholung, allgemein gilt für die Variationen [mm]V_n^k = \frac{n!}{(n-k)!}[/mm]. Es folgt also, dass sich die Anzahl der Kombinationen [mm]k! C_n^k = V_n^k[/mm] und damit [mm]C_n^k=\frac{V_n^k}{k!}={{n \choose k}}[/mm].
Alles nachvollziehbar, aber mir gelingt die logische Übertragung auf das Montagebeispiel nicht.
Dort wären die n=3 also drei verschiedene Elemente. Welche sind das? Wir haben ja nur zwei verschiedene Produkte A und B. Sind das die zur Verfügung stehenden Plätze auf der Fördereinheit? Und was heißt das in der Übertragung bei x=0. Das wäre dann die 0-te Klasse von 3 Elementen? Ich würde das gerne verstehen und habe aber wohl ein Brett vor dem Kopf. Könnte mir jemand aus dem Verständnisdilemma helfen?
|
|
|
|
Sorry - aber ich verstehe die Aufgabenstellung einfach gar nicht. Mir ist nicht klar, was da genau vor sich gehen und was untersucht bzw. beschrieben werden soll.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:45 So 28.06.2020 | Autor: | chrisno |
Ich sehe hier zwei Aspekte:
- Die Aufgabe, die gelöst ist: Es kommt zufällig entweder das Produkt A oder das Produkt B an.
Wie groß ist die Wahrscheinlichkeit, dass unter drei hintereinanderfolgenden Produkten 0, 1, 2, 3 mal Produkt A ist?
- Die eigentliche Frage, wie das n über k in der Formel in die Binomilaverteilung kommt.
Ich korrigiere mich:
Es kommt zufällig entweder das Produkt A oder das Produkt B an.
Dass das Förderband erwänht wird, dient nur dazu, die folgende Frage anders zu formulieren:
Wie groß ist die Wahrscheinlichkeit, dass unter drei hintereinanderfolgenden Produkten 0, 1, 2, 3 mal Produkt A ist?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:52 So 28.06.2020 | Autor: | Infinit |
Hallo Martha,
es ist richtig, dass es hier nur zwei Produkte, nämlich A und B gibt, aber ddie Fragestellung bezieht sich doch auf diese Fördereinheit, in der drei Exemplare zusammenkommen, bevor oder während sie abtransportiert werden. Stelle es Dir doch einfach so vor, dass zwei Förderbänder diese endgültige Fördereinheit mit Produkten beliefern, und diese beiden Produkte sind A und B. Das Ganze ist aber in "Dreierpäckchen" verpackt ( daher n = 3) und Du sollst nun mit Hilfe der Binomialverteilung ausrechnen, mit welcher Wahrscheinlichkeit in solch einer Dreierkombination entweder 0-mal, oder 1-mal oder 2-mal oder 3-mal ein Produkt aus der Kategorie A auftaucht. Das ist alles.
Viele Grüße,
Infinit
|
|
|
|
|
<br>
Hallo ihr drei,
vielen Dank für Eure Rückmeldungen. Ich glaube ich habe da irgendwie ein Denkproblem. Ich versuche die ganze Zeit diese Fragestellung auf das Urnenmodell zu übertragen. Es müsste sich um das Ziehen ohne Reihenfolgeberücksichtung und ohne Zurücklegen handeln. Dann macht es ja aber inhaltlich keinen Sinn 0 mal zu ziehen und dann kommt Anzahl [mm] {{3 \choose 0}}=1[/mm] als Anzahl der Kombinationen heraus.
Wobei mir natürlich inhaltlich klar ist, dass es genau eine Kombination nämlich BBB gibt, in der kein A in der Fördereinheit ist.
Hoffe, dass es nicht total unverständlich ist.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:10 So 28.06.2020 | Autor: | Infinit |
Hallo Martha,
Deine Problematik hast Du schon sinnvoll geschildert, aber das Übertragen dieser Situation auf das Urnenmodell funktioniert ganz einfach nicht, da es nun mal an der Aufgabenstellung vorbei geht. Es wird ja auch kein Produkt zurückgelegt oder etwas ähnliches mit ihm gemacht. Es ist reine Kombinatorik hier und die Binomialverteilung kommt rein, da es nun mal zwei Produkte gibt. Für diese "Dreierpackung" siehst Du ja in der Formel zur Berechnung der Auftretenswahrscheinlichkeit, dass, wenn Produkt A mit Wahrscheinlichkeit p auftritt, Produkt B demzufolge mit der Wahrscheinlichkeit 1 - p in solch einer Kombination berücksichtigt wird. Mehr ist es wirklich nicht.
Viele Grüße,
Infinit
|
|
|
|
|
Hallo Infinit,
danke für deine Antwort. Kann ich total nachvollziehen. Leider fällt es mir schwer nun einfach "eine Formel" anzuwenden, um zu dem Ergebnis zu kommen.
Liebe Grüße
Alice
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:32 So 28.06.2020 | Autor: | chrisno |
Ist dann deine Frage doch, wie die Formel für die Binomialverteilung zustande kommt?
Zeichne für die Aufgabe ein Baumdiagramm.
|
|
|
|
|
Ich war 40 Jahre lang Mathelehrer am Gymnasium und habe das Urnenmodell nie gemocht. Der Grund: Es ist zwar vielseitig anwendbar und extrem aussagekräftig, aber spätestens nach einem halben Jahr weiß man nicht mehr, welche Formel zu welcher Urnenziehung passt.
Deshalb empfehle ich dir folgende PARADEBEISPIELE:
Typ Zahlenschloss: Wie viele Mgl. gibt es, bei einem Zahlenschloss mit 4 Ringen und jeweils 6 Ziffern eine Zahl einzustellen? Antwort: Ziffer (6) zur PotenZ [mm] 6^4
[/mm]
Typ Pferderennen: Wieviele Mgl. gibt es, die ersten 3 Pferde von 10 Pferden insgesamt in ihrer Siegesreihenfolge festzulegen? Taste nPr auf dem Taschenrechner.
Typ Committee: Wieviele Mgl. gibt es, aus 10 Personen 3 als Committee auszuwählen. Reihenfolge unwichtig. [mm] \vektor{10 \\ 3}, [/mm] Taste nCr auf dem Taschenrechner.
Binomialverteilung: Defekte Glühlampen. In einer Produktion sind 5 % der Glühlampen defekt. Mit welcher W. sind dann in einer Kiste von 50 Stück genau k=0, 1, ...50 defekt? [mm] \vektor{50 \\ k}0,05^k*0,95^{50-k}.
[/mm]
Hier hast du: In einer Produktion von Glühlampen ist der Anteil p defekt (diese Lampen tragen den Buchstaben A). Wir ziehen 3 Lampen. Wie hoch ist die W., dass darunter genau k=1,2,3 defekt sind, also A heißen? [mm] \vektor{3 \\ k}p^k*(1-p)^{3-k}
[/mm]
|
|
|
|
|
Die ursprüngliche Fassung der Aufgabenstellung:
In einer Montage werden die Produkte A und B gefertigt. Der Abtransport erfolgt auf einer Fördereinheit für drei Produkte. Das Produkt A ist mit einer Wahrscheinlichkeit von P(A)=p auf der Fördereinheit, das Produkt B mit einer Wahrscheinlichkeit von P(B)=1-p.
Es ist die Wahrscheinlichkeit gesucht, dass A x=0,1,2,3 mal auf der Fördereinheit ist.
In dieser ursprünglichen Fassung erschien mir die Aufgabenstellung unverständlich. Ich möchte nun wenigstens zeigen, wie wenig es eigentlich gebraucht hätte, die Aufgabe klar zu formulieren:
In einer Montage werden die Produkte A und B gefertigt. Der Abtransport erfolgt auf einer Fördereinheit für drei Fertigungsstücke. Jeder der drei Plätze der Fördereinheit wird mit einem Exemplar eines der beiden Produkte belegt, nämlich mit einer Wahrscheinlichkeit von P(A)=p mit einem Exemplar der Sorte A und mit einer Wahrscheinlichkeit von P(B)=1-p mit einem Exemplar der Sorte B.
Es sind nun die Wahrscheinlichkeiten [mm] $p_x$ [/mm] dafür gesucht, dass bei einem Transport genau x Exemplare des Produktes A auf der Fördereinheit sind ($\ x [mm] \in \{0,1,2,3\} [/mm] $ ).
|
|
|
|