Binomialverteilung/hypergeomet < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:46 Mi 27.03.2013 | Autor: | sissile |
Aufgabe | In einer Urne befinden sich N durchnummerierte Kugeln, K rote und N-K weiße. Es wird eine STichprobe von n Kugeln mit bzw. ohne Zurücklegen gezogen.
[mm] \omega_i [/mm] .. Nummer der beim i-ten Mal gezogegen Kugel bezeichnet
Mit ZL [mm] \Omega_1 [/mm] = [mm] \{( \omega_1 ,.., \omega_n ) : 1 \le \omega_i \le N \}
[/mm]
Ohne ZL [mm] \Omega_2 [/mm] = [mm] \{( \omega_1 ,.., \omega_n ) : 1 \le \omega_i \le N, \omega_i \not= \omgega_j wenn i \not= j \}
[/mm]
Wir nehmen als [mm] P_i [/mm] die Gleichverteilung auf [mm] \Omega_i [/mm] und berechnen die verteilung der Zufallsvariablen X = Anzahl roter Kugel in Stichprobe. [mm] A_k^i [/mm] = [mm] \{ \omega \in \Omega_i : 1 \le \omega_j \le K fuer. genau .k .Indizes.j \}
[/mm]
[mm] P_i [/mm] (X=k)= [mm] \frac{|A_k^i|}{|\Omega_i|}
[/mm]
[mm] |A_k^1| [/mm] = [mm] \vektor{n\\ k} K^k (N-K)^{n-k}
[/mm]
[mm] |A_k^2| [/mm] = K(K-1) .. [mm] (K-k+1)(N-K)(N-K-1)...(N-K-(n-k)+1)\vektor{n \\ k} [/mm] |
Frage 1: Sind die N durchnummerierten Kugeln geordnet? SOdass zuerst die K roten liegen und dann die N-k weißen??Weil sonst verstehe ich die Mengen-Definition von [mm] A_k^i [/mm] nicht!!
Frage 2: Wie kommt man auf:
[mm] |A_k^1| [/mm] = [mm] \vektor{n\\ k} K^k (N-K)^{n-k}
[/mm]
Du hast eine Stichprobe mit n Kugeln aus der wählst du dann eine Untermenge mit k Kugeln und?
Wenn ich k Kugel von n auswähle, woher weiß ich dann dass sich in der Stichprobe (n Kugeln) noch K rote Kugeln befinden?
Frage3: Genauso hab ich meine Schwierigkeiten bei
[mm] |A_k^2| [/mm] = K(K-1) .. [mm] (K-k+1)(N-K)(N-K-1)...(N-K-(n-k)+1)\vektor{n \\ k}
[/mm]
Mir ist klar dass für die erste rote K möglichkeiten sind, für die zweite rote (K-1) möglich..., für die k te rote noch (K-k+1) Möglichkeiten.
Für die erste weiße (N-k) Möglichkeiten,.., für die n-k te weiße noch (N-k-(n-k)+1) Möglichkeiten.
Was soll aber genau wieder [mm] \vektor{n \\ k}?
[/mm]
Wenn ich k Kugel von n auswähle, woher weiß ich dann dass sich in der STichprobe noch K rote Kugeln befinden?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:42 Mi 27.03.2013 | Autor: | tobit09 |
Hallo sissile,
> Frage 1: Sind die N durchnummerierten Kugeln geordnet?
> SOdass zuerst die K roten liegen und dann die N-k
> weißen??Weil sonst verstehe ich die Mengen-Definition von
> [mm]A_k^i[/mm] nicht!!
Ja, so hat das der Autor wohl gemeint. Die roten Kugeln haben die Nummern 1 bis K, die weißen die Nummern K+1 bis N.
> Frage 2: Wie kommt man auf:
> [mm]|A_k^1|[/mm] = [mm]\vektor{n\\ k} K^k (N-K)^{n-k}[/mm]
> Du hast eine
> Stichprobe mit n Kugeln aus der wählst du dann eine
> Untermenge mit k Kugeln und?
> Wenn ich k Kugel von n auswähle, woher weiß ich dann
> dass sich in der Stichprobe (n Kugeln) noch K rote Kugeln
> befinden?
[mm] $\binom{n}{k}$ [/mm] gibt hier die Anzahl der Möglichkeiten an, k der n "Plätze" für die roten Kugeln (also die genau k vielen [mm] $j\in\{1,\ldots,n\}$ [/mm] mit [mm] $1\le\omega_j\le [/mm] K$) auszuwählen.
[mm] K^k [/mm] gibt die Anzahl der Wahlen der genau k roter Kugeln mit möglicher Wiederholung an, also die genaue Wahl der [mm] $\omega_j$ [/mm] für die oben ausgewählten [mm] $j\in\{1,\ldots,n\}$.
[/mm]
[mm] $(N-K)^{n-k}$ [/mm] gibt die Anzahl der Wahlen der genau n-k weißen Kugeln mit möglicher Wiederholung an, also die genaue Wahl der [mm] $\omega_j$ [/mm] für die oben nicht ausgewählten [mm] $j\in\{1,\ldots,n\}$.
[/mm]
> Frage3: Genauso hab ich meine Schwierigkeiten bei
> [mm]|A_k^2|[/mm] = K(K-1) ..
> [mm](K-k+1)(N-K)(N-K-1)...(N-K-(n-k)+1)\vektor{n \\ k}[/mm]
> Mir ist
> klar dass für die erste rote K möglichkeiten sind, für
> die zweite rote (K-1) möglich..., für die k te rote noch
> (K-k+1) Möglichkeiten.
> Für die erste weiße (N-k) Möglichkeiten,.., für die
> n-k te weiße noch (N-k-(n-k)+1) Möglichkeiten.
> Was soll aber genau wieder [mm]\vektor{n \\ k}?[/mm]
> Wenn ich k
> Kugel von n auswähle, woher weiß ich dann dass sich in
> der STichprobe noch K rote Kugeln befinden?
Mittels [mm] $\binom{n}{k}$ [/mm] werden wieder sozusagen die $k$ Plätze für die roten Kugeln gewählt.
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:04 Mi 27.03.2013 | Autor: | sissile |
Vielen, vielen Dank für die Erklärung.
Ich hab jedoch noch eine Frage.
Wenn ich mittels den Binomialkoeffizienten [mm] \vektor{n \\ k}, [/mm] k Plätze von den n zur verfügung stehenden Plätze für k rote Kugel reserviere.
Wie hab ich dan für die Wahl der k roten Kugel jeweils K Möglichkeiten . Wenn sich nur k rote Kugeln in der STichprobe befinden?
Oder vertuhe ich mich in der Reihenfolge? (Müsste das nicht egal sein?)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:32 Mi 27.03.2013 | Autor: | tobit09 |
> Wenn ich mittels den Binomialkoeffizienten [mm]\vektor{n \\ k},[/mm]
> k Plätze von den n zur verfügung stehenden Plätze für k
> rote Kugel reserviere.
> Wie hab ich dan für die Wahl der k roten Kugel jeweils K
> Möglichkeiten . Wenn sich nur k rote Kugeln in der
> STichprobe befinden?
Z.B. im Falle K=5 und k=3 kann jede der 3 roten Kugeln in der Stichprobe eine der Kugeln mit den Nummern 1,2,3,4 oder 5 sein. Macht [mm] $5^3$ [/mm] mögliche Wahlen dreier roter Kugeln mit möglicher Wiederholung.
Für jedes der $k$ ausgewählten [mm] $j\in\{1,\ldots,n\}$ [/mm] gibt es $K$ Möglichkeiten, für [mm] $\omega_j$ [/mm] einen Wert aus [mm] $\{1,\ldots,K\}$ [/mm] (der für die Nummer der als j-tes gezogenen Kugel steht) zu wählen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:53 Fr 29.03.2013 | Autor: | sissile |
danke*
|
|
|
|