www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBinominalkoeffizienten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Binominalkoeffizienten
Binominalkoeffizienten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binominalkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Sa 19.11.2005
Autor: Angie

Hallo!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich soll beweisen, dass für alle n [mm] \in \IN [/mm] und alle k [mm] \in [/mm] {0,...,2n} folgendes gilt:

[mm] \vektor{2n \\ k} \le \vektor{2n \\ n} [/mm]

Bin jetzt soweit gekommen:

(2n!) / (k!(2n-k)!)  [mm] \le [/mm] (2n!) / (n!(2n-n)!)

(k!(2n-k)!)  [mm] \ge [/mm] (n!n!)

Aber komme jetzt leider nicht mehr weiter, habe es schon mit vollständiger Induktion versucht, aber da wurde alles nur noch komplizierter.
Wäre für einen Tipp sehr dankbar!






        
Bezug
Binominalkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Sa 19.11.2005
Autor: angela.h.b.


> Hallo!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich soll beweisen, dass für alle n [mm]\in \IN[/mm] und alle k [mm]\in[/mm]
> {0,...,2n} folgendes gilt:
>  
> [mm]\vektor{2n \\ k} \le \vektor{2n \\ n}[/mm]
>  
> Bin jetzt soweit gekommen:
>  
> (2n!) / (k!(2n-k)!)  [mm]\le[/mm] (2n!) / (n!(2n-n)!)
>  
> (k!(2n-k)!)  [mm]\ge[/mm] (n!n!)
>  
> Aber komme jetzt leider nicht mehr weiter, habe es schon
> mit vollständiger Induktion versucht, aber da wurde alles
> nur noch komplizierter.
>  Wäre für einen Tipp sehr dankbar!

Hallo,

laß uns mal, um die Sache mit den Fakultäten etwas übersichtlicher zu halten, zwei Fälle unterscheiden:

1. k [mm] \le [/mm] n
2. n< k [mm] \le [/mm] 2n

Zu 1.

Dann ist

[mm] \vektor{2n \\ k} [/mm]
[mm] =\bruch{(2n)!}{k! (2n-k)!} =\bruch{(2n)!}{k! (2n-k)!} \bruch{(k+1)(k+2)...(k+(n-k)}{(k+1)(k+2)...(k+(n-k))} [/mm]

[mm] =\bruch{(2n)!}{n! (2n-k)!} \bruch{(k+1)(k+2)...(k+(n-k))}{1} [/mm]

[mm] =\bruch{(2n)!}{n! n! (n+1)(n+2)...(n+(n-k))} \bruch{(k+1)(k+2)...(k+(n-k))}{1} =\bruch{(2n)!}{n! n!} \bruch{(k+1)(k+2)...(k+(n-k))}{(n+1)(n+2)...(n+(n-k)} [/mm]

= [mm] \vektor{2n \\ n}\bruch{(k+1)(k+2)...(k+(n-k))}{(n+1)(n+2)...(n+(n-k)} [/mm]

[mm] =\vektor{2n \\ n}\bruch{(k+1)}{(n+1)}\bruch{(k+2)}{(n+2)}...\bruch{(k+(n-k))}{(n+(n-k)} \le [/mm] ...

Hier mußt Du Dir die [mm] \bruch{(k+i)}{(n+i)} [/mm] angucken, und berücksichtigen, daß n.V. k [mm] \le [/mm] n ist

2. Das dürfte sehr ähnlich gehen.

Gruß v. Angela





>  
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]