www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBinominalverteilung mit zurüc.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Binominalverteilung mit zurüc.
Binominalverteilung mit zurüc. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binominalverteilung mit zurüc.: Tipps
Status: (Frage) beantwortet Status 
Datum: 11:11 Sa 12.07.2014
Autor: Bindl

Aufgabe
Ein Student, der keine Zeit hat, sich auf einen 20-Fragen MultipleChoiceTest vorzubereiten, beschließt, bei jeder Frage zu raten. Dabei besitzt jede Frage fünf Antworten.
Der Test gilt als bestanden, wenn 10 Fragen richtig beantwortet sind.
a) Wie groß ist die Wahrscheinlichkeit, dass der Student deu Test besteht?
b) Wie hoch dürfte die Grenze (Anzahl richtiger Antworten) höchstens sein, damit die Chance des Studenten, die Klausur durch Raten zu bestehen, größer als 5% ist?

Hi zusammen,

hier mal was ich bisher habe:

Zufallsgröße X = Anzahl der richtigen Antworten
Wiederholungen n = 20
Wahrscheinlichkeit p = [mm] \bruch{1}{5} [/mm]

Ich habe folgende Formel:
Ws(X=10) = {n [mm] \choose [/mm] k} * [mm] p^{k} [/mm] * [mm] (1-p)^{n-k} [/mm]
wobei {n [mm] \choose [/mm] k} = [mm] \bruch{n!}{k! (n-k)!} [/mm]
(Wieso n über k nicht richtig dargestellt wird weiß ich nicht)

a)
also hier für X=10
Ws(X=10) = [mm] \bruch{20!}{10! * (20-10)!} [/mm] * [mm] (\bruch{1}{5})^{10} [/mm] * [mm] (1-\bruch{1}{5})^{20-10} [/mm]

Für [mm] X\ge10 [/mm] muss dann noch X von 11 bis 20 aufaddieren.

Ist das soweit richtig?

b)
[mm] \bruch{20!}{k! * (20-k)!} [/mm] * [mm] (\bruch{1}{5})^{k} [/mm] * [mm] (1-p)^{20-k} [/mm] > 0,05
Das müsste ich dann nach k auflösen.
Ich glaube kaum das hier erwartet wird das man das im Kopf kann.

Ist mein Ansatz hier richtig ?

Danke für eure Hilfe im voraus

        
Bezug
Binominalverteilung mit zurüc.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Sa 12.07.2014
Autor: Diophant

Hallo,

> Ein Student, der keine Zeit hat, sich auf einen 20-Fragen
> MultipleChoiceTest vorzubereiten, beschließt, bei jeder
> Frage zu raten. Dabei besitzt jede Frage fünf Antworten.
> Der Test gilt als bestanden, wenn 10 Fragen richtig
> beantwortet sind.

Das ist mit Verlaub eine blödsinnige Aufgabenstellung. Danach wäre der Student durchgefallen, wenn er bspw. 11 oder 12 Fragen richtig beantwortet. Also entweder du hast da ein 'mindestens' unterschlagen oder der Autor war ebenfalls in Zeitnot...

> a) Wie groß ist die Wahrscheinlichkeit, dass der Student
> deu Test besteht?
> b) Wie hoch dürfte die Grenze (Anzahl richtiger
> Antworten) höchstens sein, damit die Chance des Studenten,
> die Klausur durch Raten zu bestehen, größer als 5% ist?
> Hi zusammen,

>

> hier mal was ich bisher habe:

>

> Zufallsgröße X = Anzahl der richtigen Antworten
> Wiederholungen n = 20
> Wahrscheinlichkeit p = [mm]\bruch{1}{5}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>

> Ich habe folgende Formel:
> Ws(X=10) = {n [mm]\choose[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

k} * [mm]p^{k}[/mm] * [mm](1-p)^{n-k}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> wobei {n [mm]\choose[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

k} = [mm]\bruch{n!}{k! (n-k)!}[/mm]

> (Wieso n
> über k nicht richtig dargestellt wird weiß ich nicht)

>

> a)
> also hier für X=10
> Ws(X=10) = [mm]\bruch{20!}{10! * (20-10)!}[/mm] *
> [mm](\bruch{1}{5})^{10}[/mm] * [mm](1-\bruch{1}{5})^{20-10}[/mm]

>

> Für [mm]X\ge10[/mm] muss dann noch X von 11 bis 20 aufaddieren.

>

> Ist das soweit richtig?

Jein. Richtig ist, dass wie du annimmst

[mm] P(X\ge{10})= \sum_{k=10}^{20}P(X=k) [/mm]

gesucht ist.

Ich kann mir aber nicht vorstellen, dass das hier durch Aufaddieren berechnet werden soll, das wäre schon ein ziemlich heftiger Fall von Beschäftigungstherapie. Entweder ihr habt ein Tabellenwerk für die kumulierte Binomialverteilung und häufig vorkommende Parameter (würde hier vermutlich passen), oder das soll durch eine geeignete Normalverteilung angenähert werden oder es ist sogar ein Taschenrechner mit eingebauter Binomialverteilung zugelassen.

Wenn man bei Stochastik-Fragen von der Machart wie der vorliegenden einfach zwei, drei Sätze zum Background mitliefern würde, dann könnte man solche Unklarheiten vermeiden!

>

> b)
> [mm]\bruch{20!}{k! * (20-k)!}[/mm] * [mm](\bruch{1}{5})^{k}[/mm] *
> [mm](1-p)^{20-k}[/mm] > 0,05
> Das müsste ich dann nach k auflösen.
> Ich glaube kaum das hier erwartet wird das man das im Kopf
> kann.

>

> Ist mein Ansatz hier richtig ?

Nein, der ist falsch. Gesucht ist ein k, so dass

[mm] P(X\ge{k})=1-P(X\le{k-1})\ge{0.05} [/mm]

gilt. Diese Frage wiederum legt nahe, dass von den oben genannten möglichen Rechenwegen der erste mit der Tabelle wohl ausscheidet.

Kläre also bitte, wie ihr hier vorgehen sollt. Ist zufälligerweise ein grafikfähigher Taschenrechner erlaubt?


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]