www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBitte um Korrektur
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Bitte um Korrektur
Bitte um Korrektur < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bitte um Korrektur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Mi 20.01.2010
Autor: Gopal

Aufgabe
Zu gegebenen Zahlen [mm] a_{1} [/mm] und [mm] a_2 [/mm] sei eine Folge [mm] (a_n) [/mm] durch [mm] a_{n-2}=1/2(a_{n+1}+a_n) [/mm] definiert.

(a) Bestätigen Sie [mm] a_{n+2}-a_{n+1}=(-1/2)^n(a_2-a_1) [/mm]
(b) Bestimmen Sie [mm] \limes_{n\rightarrow\infty}a_n [/mm] in Abhänigkeit von [mm] a_1 [/mm] und [mm] a_2 [/mm]

Hallo,

ich bearbeite gerade einige Aufgaben als Prüfungsvorbereitung und hätte gerne etwas feedback, ob das so passt, was ich mir hier zusammenreime.

Also a) war kein Problem mittels Induktion.
zu b) hab ich:

[mm] \limes_{n\rightarrow\infty}a_n=\limes_{n\rightarrow\infty}a_2+\summe_{i=3}^{n}(-1/2)^i (a_2-a_1) [/mm]
= [mm] \limes_{n\rightarrow\infty}a_2+(a_2-a_1)\summe_{i=3}^{n}(-1/2)^i [/mm]
[mm] =a_2+(a_2-a_1)\limes_{n\rightarrow\infty}\bruch{1}{2}-\bruch{1}{4}+\summe_{i=1}^{n}(-1/2)^i [/mm]
[mm] =a_2+(a_2-a_1)(\bruch {1}{1+\bruch{1}{2}}+\bruch{1}{2}-\bruch{1}{4}) [/mm]

ich bin mir unsicher wegen des summationsindexes.






        
Bezug
Bitte um Korrektur: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:52 Do 21.01.2010
Autor: Gopal

der limes der geometrischen reihe ist ja für [mm] \summe_{i=0}^{n}(-\bruch {1}{2})^i [/mm] definiert. also müsste ich den Index von 3 auf null verschieben, also noch eine 1 abziehen. also für [mm] n\ge3: [/mm]

[mm] a_n=a_2+\summe_{i=3}^{n}((-\bruch {1}{2})^i (a_2-a_1))=(a_2-a_1)(-1+\bruch{1}{2}-\bruch{1}{4}+\summe_{i=0}^{n}(-\bruch {1}{2})^i) [/mm]


richtig?


> Zu gegebenen Zahlen [mm]a_{1}[/mm] und [mm]a_2[/mm] sei eine Folge [mm](a_n)[/mm]

> durch [mm]a_{n-2}=1/2(a_{n+1}+a_n)[/mm] definiert.
>  
> (a) Bestätigen Sie [mm]a_{n+2}-a_{n+1}=(-1/2)^n(a_2-a_1)[/mm]
>  (b) Bestimmen Sie [mm]\limes_{n\rightarrow\infty}a_n[/mm] in
> Abhänigkeit von [mm]a_1[/mm] und [mm]a_2[/mm]

>  Hallo,
>  
> ich bearbeite gerade einige Aufgaben als
> Prüfungsvorbereitung und hätte gerne etwas feedback, ob
> das so passt, was ich mir hier zusammenreime.
>  
> Also a) war kein Problem mittels Induktion.
>  zu b) hab ich:
>  
> [mm]\limes_{n\rightarrow\infty}a_n=\limes_{n\rightarrow\infty}a_2+\summe_{i=3}^{n}(-1/2)^i (a_2-a_1)[/mm]
>  
> =
> [mm]\limes_{n\rightarrow\infty}a_2+(a_2-a_1)\summe_{i=3}^{n}(-1/2)^i[/mm]
>  
> [mm]=a_2+(a_2-a_1)\limes_{n\rightarrow\infty}\bruch{1}{2}-\bruch{1}{4}+\summe_{i=1}^{n}(-1/2)^i[/mm]
> [mm]=a_2+(a_2-a_1)(\bruch {1}{1+\bruch{1}{2}}+\bruch{1}{2}-\bruch{1}{4})[/mm]
>  
> ich bin mir unsicher wegen des summationsindexes.
>  







  


Bezug
                
Bezug
Bitte um Korrektur: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Sa 23.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Bitte um Korrektur: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Fr 22.01.2010
Autor: Gauss

Hallo,

> Zu gegebenen Zahlen [mm]a_{1}[/mm] und [mm]a_2[/mm] sei eine Folge [mm](a_n)[/mm]
> durch [mm]a_{n-2}=1/2(a_{n+1}+a_n)[/mm] definiert.

Ich nehme an, du meinst: [mm]a_{n+2}=1/2(a_{n+1}+a_n)[/mm]

> (a) Bestätigen Sie [mm]a_{n+2}-a_{n+1}=(-1/2)^n(a_2-a_1)[/mm]
>  (b) Bestimmen Sie [mm]\limes_{n\rightarrow\infty}a_n[/mm] in
> Abhänigkeit von [mm]a_1[/mm] und [mm]a_2[/mm]
>  Hallo,
>  
> ich bearbeite gerade einige Aufgaben als
> Prüfungsvorbereitung und hätte gerne etwas feedback, ob
> das so passt, was ich mir hier zusammenreime.
>  
> Also a) war kein Problem mittels Induktion.
>  zu b) hab ich:
>  
> [mm]\limes_{n\rightarrow\infty}a_n=\limes_{n\rightarrow\infty}a_2+\summe_{i=3}^{n}(-1/2)^i (a_2-a_1)[/mm]

Da [mm]a_{n+2}-a_{n+1}=(-1/2)^n(a_2-a_1)[/mm] gilt:
[mm]a_{n}=a_{n-1}+(-\bruch{1}{2})^{n-2}(a_{2}-a_{1})[/mm]
und damit:
[mm]\limes_{n\rightarrow\infty}a_n=\limes_{n\rightarrow\infty}a_2+\summe_{i=1}^{n}(-1/2)^i (a_2-a_1)[/mm]

Gruß, Gauss

> =
> [mm]\limes_{n\rightarrow\infty}a_2+(a_2-a_1)\summe_{i=3}^{n}(-1/2)^i[/mm]
>  
> [mm]=a_2+(a_2-a_1)\limes_{n\rightarrow\infty}\bruch{1}{2}-\bruch{1}{4}+\summe_{i=1}^{n}(-1/2)^i[/mm]
> [mm]=a_2+(a_2-a_1)(\bruch {1}{1+\bruch{1}{2}}+\bruch{1}{2}-\bruch{1}{4})[/mm]
>  
> ich bin mir unsicher wegen des summationsindexes.
>  
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]