www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikBleibende Regelabweichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Regelungstechnik" - Bleibende Regelabweichung
Bleibende Regelabweichung < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bleibende Regelabweichung: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:47 Mo 14.07.2014
Autor: sardelka

Aufgabe
Man bestimme die bleibende Regelabweichung bei einem Einheitssprung für den Regelkreis im Fall [mm] K_{p} [/mm] = 2.

G(s) = [mm] \bruch{1}{(\bruch{s^{2}}{2} + s + 1)(\bruch{s}{3}+1)} [/mm]

[mm] G_{w}(s) [/mm] = [mm] \bruch{6K_{p}}{s^{3} + 5s^{2} + 8s + 6(1+K_{p})} [/mm]

Lösung:

x = Regelgröße
e = Regelabweichung
w = Führungsgröße


[mm] x(\infty) [/mm] = [mm] \bruch{K_{p}}{1+K_{p}} [/mm] = [mm] \bruch{2}{3} [/mm]

[mm] e(\infty) [/mm] = w - [mm] x(\infty) [/mm] = 1 - [mm] \bruch{2}{3} [/mm]  = [mm] \bruch{1}{3} [/mm]

Hallo,

ich habe diese Aufgabe vor mir und ich verstehe nicht wie man auf die Lösung kommt.

Dass w = 1 ist, ist mir klar, weil es ja um einen Einheitssprung handelt.
Wie die Führungsübertragungsfunktion berechnet worden ist, ist mir auch klar. Nun wird ja s = [mm] \infty [/mm] gesetzt, um sich den Grenzwert anzuschauen.

Wenn ich aber s = [mm] \infty [/mm] setze, erhalte ich in der Führungsübertragungsfunktion im Nenner unendlich. Dies führt doch zu einem Grenzwert von 0. In der Lösung steht aber [mm] \bruch{K_{p}}{1+K_{p}} [/mm] als Grenzwert.

Was rechne ich denn falsch?

Vielen Dank für eure Hilfe

        
Bezug
Bleibende Regelabweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mo 14.07.2014
Autor: Herby

Hi Sardelka,

es ist bei mir schon ein paar Tage her, aber es war doch so:

[mm] \limes_{t\rightarrow \infty} [/mm] (im Zeitbereich) ist analog [mm] \limes_{s\rightarrow 0} [/mm] (Bildbereich)


LG
[Dateianhang nicht öffentlich] Herby


Bezug
                
Bezug
Bleibende Regelabweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Mo 14.07.2014
Autor: sardelka

Danke für den Tipp.

Wenn es so ist, dann kommt die richtige Lösung raus. Die Frage wäre eigentlich erledigt.

Aber in der Lösung steht ja in der Klamer unendlich. D.h. es wird s = [mm] \infty [/mm] eingesetzt?  

Ich habe eine zweite sehr ähnliche Aufgabe und dort wird ebenfalls [mm] \infty [/mm] eingesetzt. Ist also kein Flüchtigkeitsfehler. Auch wenn ich in jw umwandel, ändert es nichts an der Antwort.

Bezug
                        
Bezug
Bleibende Regelabweichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Mo 14.07.2014
Autor: Herby

Hi Sardelka,

meiner Meinung nach ist das hier in der Lösung nur ein bisschen (eher ziemlich, denn der Einheitssprung ist ja auch nicht erkennbar) dürftig notiert und es sollte eigentlich [mm] \limes_{t\rightarrow\infty}x(t) [/mm] dort stehen und zusätzlich die Überführung zur Laplacetransformierten. Erst dann kommt man auf [mm] \limes_{s\rightarrow 0}s*F(s) [/mm] <-- was der rechten Seite der Gleichung entspricht.

Ich lass das hier mal auf halb beantwortet stehen, es gibt sicher Ergänzungen hierzu.

ach ja, nur so nebenbei - das mit dem Grenzwert im Bildbereich geht nur, wenn der Grenzwert im Zeitbereich existiert.

LG
[Dateianhang nicht öffentlich] Herby

Bezug
                        
Bezug
Bleibende Regelabweichung: Nomenklatur
Status: (Antwort) fertig Status 
Datum: 19:40 Di 15.07.2014
Autor: Infinit

Hallo sardelka,
Herbys Erklärung ist schon okay und Du solltest etwas auf die Nomenklatur achten. In der RT gilt normalerweise: Variablen mit Kleinbuchstaben bezeichnen Größen im Zeitbereich, solche mit Großbuchstaben die transformierte Größe im Frequenz- / Laplacebereich. Also wird beispielsweise aus dem Zeitsignal [mm] e(t) [/mm] die Laplacetransformierte [mm] E(s) [/mm].
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]