www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBöses Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Böses Integral
Böses Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Böses Integral: Prozent der Ausgangsenergie
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 04.03.2009
Autor: DrNetwork

Aufgabe
ursprüngliches Signal:
[mm] f(x)=e^{-(x-1300)^2} [/mm]

verzerrtes Signal:
[mm] g_{a,b}(x)=\begin{cases} a(x-b)^2*e^{-(x-b)}, & \mbox{für } x\ge1298 \\ 0, & \mbox{für } x<1298\end{cases} [/mm]

Vergleichen Sie den Energieinhalt des verzerrten Signals mit dem Energieinhalt
des Ausgangssignals. Wie viel Prozent der Ausgangsenergie sind noch
vorhanden? (7 Punkte)
Anleitung:
- Weisen Sie nach, dass die gesamte Ausgangs-Energie gilt:
[mm] \integral_{-\infty}^{\infty}{f(x) dx} [/mm] = [mm] \wurzel{\pi} [/mm]
Dazu können Sie das Ergebnis für das Gaußsche Fehler-Integral
[mm] \integral_{-\infty}^{\infty}{e^{-0.5x^2} dx} [/mm] = [mm] \wurzel{2\pi} [/mm]
und die Substitutionsregel verwenden.

Berechnen Sie in einem nächsten Schritt die prozentual verbleibende Energie
(Beachten Sie bei der Integration: g(x) = 0 für x < 1298).

Falls Sie in Aufgabe 1.5 zu keinen Werten gekommen sind, rechnen Sie mit
den Werten a = 0,739 und b = 1298 weiter.

1. Frage was ist das Gaussche Fehlerintegral? und was kann man damit so anstellen
2. Hab mich an einer Lösung versucht kann aber nicht ganz stimmen, wo liegt der Fehler?


[mm] \integral_{-\infty}^{\infty}{e^{-(x-1300)^2}dx} [/mm] = [mm] \wurzel{\pi} [/mm]

[mm] z=-(x-1300)^2 [/mm]
$z'=-2(x-1300)$
[mm] dx=\bruch{dz}{-2(x-1300)} [/mm]
x = [mm] \wurzel{-z}+1300 [/mm]

[mm] \integral_{-\infty}^{\infty}{\bruch{e^z}{-2\wurzel{-z}}dz} [/mm] = [mm] \wurzel{\pi} [/mm]

[mm] u=\wurzel{-z} [/mm]
[mm] u'=-\bruch{1}{2\wurzel{z}} [/mm]
[mm] dz=\bruch{du}{-\bruch{1}{2\wurzel{z}}}=-2\wurzel{z}du [/mm]
$z = [mm] -u^2$ [/mm]

[mm] \integral_{-\infty}^{\infty}{-2\wurzel{-u^2}e^{-u^2} dz} [/mm] = [mm] \wurzel{\pi} [/mm]
[mm] 2*\integral_{-\infty}^{\infty}{u^2*e^{-u^2} dz} [/mm] = [mm] \wurzel{\pi} [/mm]

[mm] w=-u^2 [/mm]
$w'=-2u$
[mm] du=\bruch{dw}{-2u} [/mm]

[mm] -1*\integral_{-\infty}^{\infty}{e^w dw} [/mm] = [mm] \wurzel{\pi} [/mm]

und da kann ja was nicht stimmen, kann mir einer paar tipps geben? Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Böses Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Mi 04.03.2009
Autor: rainerS

Hallo!

> ursprüngliches Signal:
>  [mm]f(x)=e^{-(x-1300)^2}[/mm]
>  
> verzerrtes Signal:
>  [mm]g_{a,b}(x)=\begin{cases} a(x-b)^2*e^{-(x-b)}, & \mbox{für } x\ge1298 \\ 0, & \mbox{für } x<1298\end{cases}[/mm]
>  
> Vergleichen Sie den Energieinhalt des verzerrten Signals
> mit dem Energieinhalt
>  des Ausgangssignals. Wie viel Prozent der Ausgangsenergie
> sind noch
>  vorhanden? (7 Punkte)
>  Anleitung:
>  - Weisen Sie nach, dass die gesamte Ausgangs-Energie
> gilt:
>  [mm]\integral_{-\infty}^{\infty}{f(x) dx}[/mm] = [mm]\wurzel{\pi}[/mm]
>  Dazu können Sie das Ergebnis für das Gaußsche
> Fehler-Integral
>  [mm]\integral_{-\infty}^{\infty}{e^{-0.5x^2} dx}[/mm] =
> [mm]\wurzel{2\pi}[/mm]
>  und die Substitutionsregel verwenden.
>  
> Berechnen Sie in einem nächsten Schritt die prozentual
> verbleibende Energie
>  (Beachten Sie bei der Integration: g(x) = 0 für x <
> 1298).
>  
> Falls Sie in Aufgabe 1.5 zu keinen Werten gekommen sind,
> rechnen Sie mit
>  den Werten a = 0,739 und b = 1298 weiter.
>  1. Frage was ist das Gaussche Fehlerintegral? und was kann
> man damit so anstellen

Das kannst du überall nachlesen, zum Beispiel []in der Wikipedia.

>  2. Hab mich an einer Lösung versucht kann aber nicht ganz
> stimmen, wo liegt der Fehler?
>  
>
> [mm]\integral_{-\infty}^{\infty}{e^{-(x-1300)^2}dx} = \wurzel{\pi}[/mm]

Das ist richtig, aber sollt du nicht erst noch ausrechnen, dass [mm] $\sqrt{\pi}$ [/mm] herauskommt?

>  
> [mm]z=-(x-1300)^2[/mm]
>  [mm]z'=-2(x-1300)[/mm]
>  [mm]dx=\bruch{dz}{-2(x-1300)}[/mm]
>  x = [mm]\wurzel{-z}+1300[/mm]
>  
> [mm]\integral_{-\infty}^{\infty}{\bruch{e^z}{-2\wurzel{-z}}dz}[/mm]
> = [mm]\wurzel{\pi}[/mm]
>  
> [mm]u=\wurzel{-z}[/mm]
>  [mm]u'=-\bruch{1}{2\wurzel{z}}[/mm]

[notok]

[mm] u' = -\bruch{1}{2\wurzel{-z}}[/mm]

>  [mm]dz=\bruch{du}{-\bruch{1}{2\wurzel{z}}}=-2\wurzel{z}du[/mm]

[mm] dz = -2\wurzel{-z}du[/mm]

>  [mm]z = -u^2[/mm]
>  
> [mm]\integral_{-\infty}^{\infty}{-2\wurzel{-u^2}e^{-u^2} dz}[/mm] =

Da hast du den Nenner [mm] $-2\wurzel{-z}$ [/mm] verschlampt.

Deine Substitutionen ergeben zusammen $u=x-1300$, also das Integral:

[mm] \integral_{-\infty}^{\infty}{e^{-u^2}dx}[/mm]

Also musst du zeigen, dass dieses Integral [mm] $=\sqrt{\pi}$ [/mm] ist.

Überlege dir, wie du dieses Integral auf das Fehlerintegral zurückführen kannst. Es ist eine ganz einfache Substitution.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Böses Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Do 05.03.2009
Autor: DrNetwork

>>Deine Substitutionen ergeben zusammen $ u=x-1300 $, also das Integral:

>>$ [mm] \integral_{-\infty}^{\infty}{e^{-u^2}dx} [/mm] $

>>Also musst du zeigen, dass dieses Integral $ [mm] =\sqrt{\pi} [/mm] $ ist.

Ne, da häng ich irgendwie. Kann mir das kurz einer erklären?


Bezug
                        
Bezug
Böses Integral: Link
Status: (Antwort) fertig Status 
Datum: 20:45 Do 05.03.2009
Autor: Loddar

Hallo DrNetwork!


Da wurde Dir doch schon []dieser Link genannt, in welchem das Integral gelöst wird.


Gruß
Loddar


Bezug
                                
Bezug
Böses Integral: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:49 Do 05.03.2009
Autor: DrNetwork

Vielen Dank, aber so ganz hat mir das nicht weitergeholfen... :)

Bezug
                                        
Bezug
Böses Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Do 05.03.2009
Autor: angela.h.b.


> Vielen Dank, aber so ganz hat mir das nicht
> weitergeholfen... :)

Hallo,

da Du diese Mitteilung als Frage eingestellt hast, gehe ich davon aus, daß Du Dir weitere Hilfe wünschst.

Du solltest nun mal erklären, wie weit Du die Berechnung im Link nachvollziehen konntest, und wo es hakt.

(Nützlich wäre auch ein Eintrag in Deinem Profil. Du postest im Schulforum, mich dünkt jedoch, daß Deine Frage hier thematisch nicht ganz paßt. ist das für eine facharbeit, oder worum geht es?)

Gruß v. Angela


Bezug
                                                
Bezug
Böses Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Do 05.03.2009
Autor: DrNetwork


> Du solltest nun mal erklären, wie weit Du die Berechnung im
> Link nachvollziehen konntest, und wo es hakt.

ich weiss noch nicht mal so genau welche Rechnung da gemeint ist.

> (Nützlich wäre auch ein Eintrag in Deinem Profil. Du
> postest im Schulforum, mich dünkt jedoch, daß Deine Frage
> hier thematisch nicht ganz paßt. ist das für eine
> facharbeit, oder worum geht es?)

Ne ist eine Vorschlag für die Abitur Klausur.


Bezug
        
Bezug
Böses Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 05.03.2009
Autor: angela.h.b.


> ursprüngliches Signal:
>  [mm]f(x)=e^{-(x-1300)^2}[/mm]

>  [mm]\integral_{-\infty}^{\infty}{f(x) dx}[/mm] = [mm]\wurzel{\pi}[/mm]
>  Dazu können Sie das Ergebnis für das Gaußsche
> Fehler-Integral
>  [mm]\integral_{-\infty}^{\infty}{e^{-0.5x^2} dx}[/mm] =
> [mm]\wurzel{2\pi}[/mm]
>  und die Substitutionsregel verwenden.
>  

>  1. Frage was ist das Gaussche Fehlerintegral? und was kann
> man damit so anstellen

Hallo,

ein bißchen dazu steht ja in dem Link.

Ich hatte nicht erkannt, daß Du überhaupt nicht [mm] \integral_{-\infty}^{\infty}{e^{-x^2} dx} [/mm]  selbst berechnen mußt, daher mein Hinweis auf die Rechnung im Link.

Da Du verwenden darfst, daß

>  [mm]\integral_{-\infty}^{\infty}{e^{-0.5x^2} dx}[/mm] =  [mm]\wurzel{2\pi}[/mm]

gilt,

wäre doch eine Substitution, bei welcher   [mm] 0.5t^2=(x-1300)^2 [/mm]   ist, verlockend.

Also

[mm] t=\bruch{x-1300}{\wurzel{2}} [/mm]

[mm] dt=\bruch{1}{\wurzel{2}} [/mm] dx

ergibt???


>  2. Hab mich an einer Lösung versucht kann aber nicht ganz
> stimmen, wo liegt der Fehler?

Es hatte Dich rainer ja schon auf eine Fehler hingewiesen.

Versuch es jetzt doch mal mit dem vorgeschlagenen Weg.

Ich hoffe, daß ich nun die richtige Frage beantwortet habe, und keine beantwortete oder nie gestellte.

Gruß v. Angela


Bezug
                
Bezug
Böses Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 Do 05.03.2009
Autor: DrNetwork

Achso vielen Dank! So meinten die das in Ordung.

Würd es dir was ausmachen, die Integration davon trotzdem zu erklären? Würd mich sehr dafür interessieren!

Bezug
                        
Bezug
Böses Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Do 05.03.2009
Autor: leduart

Hallo
Du willst einen Integranden [mm] e^{-0.5u^2} [/mm]
Du hast einen Integranden [mm] e^{-(x-300)^2} [/mm] oder so aehnlich
was ist naheliegender als die Substitution [mm] 0.5u^2=(x-300)^2 [/mm]
oder u=...
man sollte immer direkt auf das Ziel zuarbeiten statt sich durch endlose Substitutionen zu quälen.
Und da du substituieren kannst sollte das ein Kinderspiel sein.
Gruss leduart

Bezug
                        
Bezug
Böses Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:49 Fr 06.03.2009
Autor: angela.h.b.


> Achso vielen Dank! So meinten die das in Ordung.
>  
> Würd es dir was ausmachen, die Integration davon trotzdem
> zu erklären? Würd mich sehr dafür interessieren!

Hallo,

in dem Wikilink steht das unten bei "Normierung".

Der Trick ist, daß man das Quadrat des Integrals berechnest, was über ein Flächenintegral geschieht.
Durch Übergang zu Polarkoordinaten kommt man dann an die Lösung.

Ich denke, um dies zu verstehen, müßte man sich zunächst ein bißchen mit Flächenintegralen in auch mit den Koordinatentransformationen befaßt haben.

Wenn man Palarkoordinaten verwendet, geht dxdy in [mm] r*drd\varphi [/mm] über, und dies ist es, was das Ding dann integrierbar macht.

Gruß v. Angela






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]