www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBrucherweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Brucherweiterung
Brucherweiterung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brucherweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Sa 15.10.2005
Autor: maggmich

Hallo!

Ich habe den Bruch  [mm] \bruch{r}{1+r} [/mm]
Ich habe gesehen, dass man diesen auf 1- [mm] \bruch{1}{1+r} [/mm] erweitern kann.
Nun habe ich probiert den Zähler und den Nenner durch r zu dividieren. Dann komme ich auf  [mm] \bruch{1}{ \bruch{1+r}{r}} [/mm]
Das hilft mir aber auch nicht weiter.
Habt ihr einen Lösungsvorschlag?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mfg Jürgen

        
Bezug
Brucherweiterung: welches Ziel?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 Sa 15.10.2005
Autor: Bastiane

Hallo und [willkommenmr]!

> Ich habe den Bruch  [mm]\bruch{r}{1+r}[/mm]
> Ich habe gesehen, dass man diesen auf 1- [mm]\bruch{1}{1+r}[/mm]
> erweitern kann.
>  Nun habe ich probiert den Zähler und den Nenner durch r zu
> dividieren. Dann komme ich auf  [mm]\bruch{1}{ \bruch{1+r}{r}}[/mm]
> Das hilft mir aber auch nicht weiter.
>  Habt ihr einen Lösungsvorschlag?

Was möchtest du denn mit deinem Bruch machen? Also, was möchtest du erhalten, was ist dein Ziel? Wenn ich das weiß, habe ich bestimmt einen Vorschlag, aber so weiß ich halt nicht, was du machen möchtest.

Viele Grüße
Bastiane
[cap]



Bezug
        
Bezug
Brucherweiterung: Polynomdivision
Status: (Antwort) fertig Status 
Datum: 18:06 Sa 15.10.2005
Autor: MathePower

Hallo maggmich

> Ich habe den Bruch  [mm]\bruch{r}{1+r}[/mm]
> Ich habe gesehen, dass man diesen auf 1- [mm]\bruch{1}{1+r}[/mm]
> erweitern kann.
>  Nun habe ich probiert den Zähler und den Nenner durch r zu
> dividieren. Dann komme ich auf  [mm]\bruch{1}{ \bruch{1+r}{r}}[/mm]
> Das hilft mir aber auch nicht weiter.
>  Habt ihr einen Lösungsvorschlag?

einfach den Zähler durch den Nenner mit Hilfe der Polynomdivision teilen.

Gruß
MathePower

Bezug
        
Bezug
Brucherweiterung: geeignete Null addieren
Status: (Antwort) fertig Status 
Datum: 04:12 So 16.10.2005
Autor: Loddar

Hallo maggmich!


Mal alternativ zu Mathepower's Vorschlag mit der MBPolynomdivision ...

Einfach eine "geeignete Null" addieren:

[mm] $\bruch{r}{1+r} [/mm] \ = \ [mm] \bruch{\red{1 \ + \ }r\red{ \ -\ 1}}{1+r} [/mm] \ = \ [mm] \bruch{\red{1 \ + \ }r}{1+r} [/mm] + [mm] \bruch{\red{-1}}{1+r} [/mm] \ = \ ...$


Ist der letzte Schritt nun klar?

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]