www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Bruchrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Bruchrechnung
Bruchrechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchrechnung: Suche nach N
Status: (Frage) beantwortet Status 
Datum: 18:28 Fr 10.07.2009
Autor: jaylo

s = [mm] \bruch{1}{ts + \bruch{tp}{N} } [/mm]

Ich will das nach N Auflösen. Bekomme es aber nicht richtig hin.
Bis jetzt hab ich das, so gemacht.

s = [mm] \bruch{1}{ts + \bruch{tp}{N} } [/mm] / * ts

s*ts =  [mm] \bruch{1}{ \bruch{tp}{N} } [/mm] / schiebe das N die 2 Bruchstriche hoch

s*ts = [mm] \bruch{N}{tp} [/mm] / * tp

ich komm dann immer auf das: s*ts*tp = N

Hinweis:
s, ts und tp sind gegeben. s= 6,66 ; ts = 0,05; tp = 0,95


Wo liegt der Fehler?

lg jaylo



        
Bezug
Bruchrechnung: gleich 1. Schritt falsch
Status: (Antwort) fertig Status 
Datum: 18:30 Fr 10.07.2009
Autor: Loddar

Hallo jaylo!


Gleich der 1. Schritt ist falsch, da die Multiplikation mit [mm] $t_S$ [/mm] keine Vereinfachung bringt. Dann kürzt Du auch noch aus einer Summe (und Du weißt ja ....).

Multipliziere gleich zu Beginn mit dem ganzen Nenner des Bruches.


Gruß
Loddar


Bezug
                
Bezug
Bruchrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Fr 10.07.2009
Autor: jaylo

Ich habs dann jetzt anders gemacht, aber auch jetzt haut es nicht hin.

s = [mm] \bruch{1}{ 0,05 + \bruch{0,95}{N} } [/mm] / * (0,05 + [mm] \bruch{0,95}{N}) [/mm]

s * (0,05 + [mm] \bruch{0,95}{N}) [/mm] = 1

s * 0,05 + s * [mm] \bruch{0,95}{N} [/mm] = 1 / *N

dann komm ich genau wieder auf s. was nicht stimmen kann.

wie soll ich konkrekt vorgehen?

Bezug
                        
Bezug
Bruchrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 Fr 10.07.2009
Autor: Arcesius

Hallo

h> Ich habs dann jetzt anders gemacht, aber auch jetzt haut es

> nicht hin.
>  
> s = [mm]\bruch{1}{ 0,05 + \bruch{0,95}{N} }[/mm] / * (0,05 +
> [mm]\bruch{0,95}{N})[/mm]
>  
> s * (0,05 + [mm]\bruch{0,95}{N})[/mm] = 1
>
> s * 0,05 + s * [mm]\bruch{0,95}{N}[/mm] = 1 / *N
>  
> dann komm ich genau wieder auf s. was nicht stimmen kann.
>  
> wie soll ich konkrekt vorgehen?


Nun, wenn du jetzt die Gleichung mit N multiplizierts am Schluss, bekommst du ja:

[mm] N*t_{s}*s [/mm] + [mm] t_{p}*s [/mm] = N      | - [mm] N*t_{s}*s [/mm]
[mm] t_{p}*s [/mm] = N - [mm] N*t_{s}*s [/mm]       | N ausklammern
[mm] t_{p}*s [/mm] = [mm] N(1-t_{s}*s) [/mm]         | [mm] /(1-t_{s}*s) [/mm]

Dann hast du dein N :)

Grüsse, Amaro

Bezug
        
Bezug
Bruchrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Fr 10.07.2009
Autor: jaylo

Ich würde mich wirklich für eine Antwort freuen.

Bezug
        
Bezug
Bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Fr 10.07.2009
Autor: Arcesius

Hallo

Schaue hier

Grüsse, Amaro

Bezug
                
Bezug
Bruchrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Fr 10.07.2009
Autor: jaylo

Jetzt hab ich es raus ;). *Freu*

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]