www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Bruchterm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Bruchterm
Bruchterm < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchterm: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:52 Di 12.02.2013
Autor: crazycypres

Aufgabe
3- [mm] \bruch{3a-b}{a+b} [/mm]
__________________
[mm] 4\bruch{a+b}{a-b} [/mm] - [mm] \bruch{16b^2}{a^2-b^2} [/mm] - [mm] \bruch{16b}{a+b} [/mm]

Hallo zusammen,

vielleicht könnt ihr mir bei meinem Problem helfen.

Mein Problem ist das ich auf dieses Ergebnis nicht komme:

[mm] \bruch{b}{a-b} [/mm]

Hier mein Lösungsansatz:

Den Zähler-Bruch im Hauptbruch habe ich folgendermaßen umgerechnet:

[mm] \bruch{3a+3b}{a+b} [/mm] - [mm] \bruch{3a-b}{a+b} [/mm] = [mm] \bruch{2b}{a+b} [/mm]

Hier das Ergebnis des Nenner-Bruchs:

1. Step

[mm] \bruch{4a-4b+a+b}{a-b} [/mm] - [mm] \bruch{16b^2}{a^2-b^2} [/mm] - [mm] \bruch{16b}{a+b} [/mm]

Im 1. Step habe ich erstmal die ganze Zahl "4" aufgelöst und im 2. Step werde ich die Nenner auf [mm] a^2-b^2 [/mm] bringen (3. Binom),
da dieser das kgV hier ist.

2. Step

[mm] \bruch{5a-3b(a+b)-16b^2-16b(a-b)}{(a+b)(a-b)} [/mm]

Den ersten und letzten Bruch habe ich mit dem Faktor (a+b) bzw. (a-b) erweitert.

3. Step

[mm] \bruch{5a^2+3b^2-14ab}{(a+b)(a-b)} [/mm]

Im letzten Step habe ich dann alle Faktoren und die Zähler miteinander verrechnet.

Zum schluss kommt dann die Verrechnung der beiden Brüche aus Zähler und Nenner des Hauptbruchs, in dem ich den Zähler-Bruch mit den unteren Nenner-Bruch mit dessen Kehrwert multipliziere.

[mm] \bruch{5a^2+3b^2-14ab}{(a+b)(a-b)} \* \bruch{a+b}{2b} [/mm] = [mm] \bruch{2ab-b^2}{5a^2+3b^2-14ab} [/mm]

Irgendwie glaube ich selbst nicht an meinem Ergebnis, kann ja auch sein das es richtig ist. :-)

Falls ihr Lust und Zeit habt wäre ich euch sehr dankbar wenn ihr mal drüber schaut und mir ein Feedback geben könntet.

Vielen Dank im Voraus.

CrazyCypres

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bruchterm: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Di 12.02.2013
Autor: chrisno

Hallo,

> Den Zähler-Bruch im Hauptbruch habe ich folgendermaßen
> umgerechnet:
>  
> [mm]\bruch{3a+3b}{a+b}[/mm] - [mm]\bruch{3a-b}{a+b}[/mm] = [mm]\bruch{2b}{a+b}[/mm]

Da hast Du nicht beachtet, dass vor dem zweiten Bruch und vor dem b in dem Bruch jeweils ein Minuszeichen steht. 3b + b = 4b

>  
> Hier das Ergebnis des Nenner-Bruchs:
>  
> 1. Step
>  
> [mm]\bruch{4a-4b+a+b}{a-b}[/mm] - [mm]\bruch{16b^2}{a^2-b^2}[/mm] -
> [mm]\bruch{16b}{a+b}[/mm]

Auch das stimmt nicht. Die 4 steht alsFaktor vor dem Bruch. Wenn Du sie in den Bruch hineinnhemen willst, dann schreibst Du im Zähler 4(a+b)

>
> Im 1. Step habe ich erstmal die ganze Zahl "4" aufgelöst
> und im 2. Step werde ich die Nenner auf [mm]a^2-b^2[/mm] bringen (3.
> Binom),
> da dieser das kgV hier ist.
>  
> 2. Step
>  
> [mm]\bruch{5a-3b(a+b)-16b^2-16b(a-b)}{(a+b)(a-b)}[/mm]
>
> Den ersten und letzten Bruch habe ich mit dem Faktor (a+b)
> bzw. (a-b) erweitert.

Bis auf den Fehler, der sich von 2. fortpflanzt, ist das in Ordnung

>  
> 3. Step
>  
> [mm]\bruch{5a^2+3b^2-14ab}{(a+b)(a-b)}[/mm]
>
> Im letzten Step habe ich dann alle Faktoren und die Zähler
> miteinander verrechnet.

Das überprüfe ich nun nicht, da sich eh einges ändert.

>  
> Zum schluss kommt dann die Verrechnung der beiden Brüche
> aus Zähler und Nenner des Hauptbruchs, in dem ich den
> Zähler-Bruch mit den unteren Nenner-Bruch mit dessen
> Kehrwert multipliziere.

Den Text verstehe ich nicht.

>  

Genau falsch herum: Du nimmst den Bruch aus dem Zähler und multiplizierst ihn mit dem Kehrwert des Bruchs aus dem Nenner.

> [mm]\bruch{5a^2+3b^2-14ab}{(a+b)(a-b)} \* \bruch{a+b}{2b}[/mm] =
> [mm]\bruch{2ab-b^2}{5a^2+3b^2-14ab}[/mm]
>  

Auf ein Neues.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]