www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Brüche rational machen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Brüche rational machen
Brüche rational machen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brüche rational machen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:23 Mo 04.05.2009
Autor: piezo

Aufgabe
Machen Sie die Nenner folgender Brüche rational!

[mm] 3+2\wurzel{2} /3-2\wurzel{2} [/mm]  =

[mm] (3+2\wurzel{2})*(3+2\wurzel{2}) [/mm] / [mm] (3-2\wurzel{2})*(3+2\wurzel{2}) [/mm] =

[mm] (3+2\wurzel{2})²/ [/mm] 9-4 = [mm] (3+2\wurzel{2})² [/mm] / 5

Würde dies als Lösung laut Aufgabenstellung genügen, bzw. ist der Lösungsansatz richtig??? denke aber dass das quadrat auch noch weg muss, wobei ich anschließend wieder eine wurzel im nenner hätte?!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Brüche rational machen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Mo 04.05.2009
Autor: reverend

Hallo Christian, [willkommenmr]

Deine Aufgabe ist ohne Klammern nicht gut zu lesen. Noch besser wäre es, wenn Du den Formeleditor verwendest. Er ist sehr leistungsfähig und man gewöhnt sich schnell daran.

> Machen Sie die Nenner folgender Brüche rational!

(Wenn ichs recht sehe, folgt dann ja nur eine Aufgabe, nicht mehrere)

>  [mm]3+2\wurzel{2} /3-2\wurzel{2}[/mm]  =
> [mm](3+2\wurzel{2})*(3+2\wurzel{2})[/mm] /
> [mm](3-2\wurzel{2})*(3+2\wurzel{2})[/mm] =
> [mm](3+2\wurzel{2})²/[/mm] 9-4 = [mm](3+2\wurzel{2})²[/mm] / 5

korrigiert: [mm] \bruch{3+2\wurzel{2}}{3-2\wurzel{2}}=\bruch{(3+2\wurzel{2})*(3+2\wurzel{2})}{(3-2\wurzel{2})*(3+2\wurzel{2})}=\bruch{(3+2\wurzel{2})^2}{9-\red{8}}=\red{(3+2\wurzel{2})^2}=\red{17+12\wurzel{2}} [/mm]

  

> Würde dies als Lösung laut Aufgabenstellung genügen, bzw.
> ist der Lösungsansatz richtig???

Der Lösungsansatz ist richtig und gut gefunden - das ist eindeutig der schwerste Teil!

> denke aber dass das
> quadrat auch noch weg muss,

Stimmt. Oben habe ich auch ausquadriert. Andererseits würde ich die Aufgabe auch dann für gelöst erachten, wenn Du nicht mehr ausquadrierst. Der wesentliche Schritt war ja, den Nenner rational zu machen.

> wobei ich anschließend wieder
> eine wurzel im nenner hätte?!

Nein, woher denn? Im Zähler bleibt allerdings eine Wurzel.

Grüße
reverend

Bezug
                
Bezug
Brüche rational machen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:00 Mo 04.05.2009
Autor: piezo

Vielen Dank für die schnelle Korrektur- jedoch kann ich nicht ganz die Zusammenfassung des Endergebnisses von [mm] (3+2\wurzel{2})²= 17+12\wurzel{2} [/mm] nachvollziehen?

Bezug
                        
Bezug
Brüche rational machen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Mo 04.05.2009
Autor: Nalewka

Guten Tag,

> Vielen Dank für die schnelle Korrektur- jedoch kann ich
> nicht ganz die Zusammenfassung des Endergebnisses von
> [mm](3+2\wurzel{2})²= 17+12\wurzel{2}[/mm] nachvollziehen?

Benutze die erste Binomische Formel.

Nal


Bezug
                                
Bezug
Brüche rational machen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 Mo 04.05.2009
Autor: piezo

aah- kleiner aussetzer von mir, jetz hab ich das ergebnis!
danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]