www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikCantor Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Cantor Menge
Cantor Menge < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cantor Menge: Frage
Status: (Frage) beantwortet Status 
Datum: 15:05 Mi 12.01.2005
Autor: xsjani

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Auf einer Borel-Algebra von [0,1] [mm] \subseteq \IR [/mm] geht es um ein Wahrscheinlichkeitsmaß P, daß von der Gleichverteilung induziert wird.
C [mm] \subseteq [/mm] [0,1) sei Cantor Menge.

(a) Nun ist zu zeigen, daß P(C) = 0
(b) und es ist ein Wahrscheinlichkeitsmaß Q auf Bor [(0,1)] anzugeben mit Q(C) = 1.

Kann das jemand?

Danke.

Juliane

        
Bezug
Cantor Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Do 13.01.2005
Autor: Julius

Hallo Juliane!

Zunächst mal zum Nachweis, dass das Lebesgue-Maß (das ist das von der Gleichverteilung induzierte Maß) Null ist:

Zur Bezeichnung:

Wir nehmen an, dass für ein $n [mm] \ge [/mm] 0$ schon die [mm] $2^{n+1}-1$ [/mm] Intervalle [mm] $I_{m,n}$ [/mm] $(0 [mm] \le [/mm] m [mm] \le n,\, k=1,\ldots,2^m)$ [/mm] schon so definiert seien, dass gilt:

$[0,1] [mm] \setminus \bigcup_{{0 \le m \le n} \atop {1 \le k \le 2^m}} I_{m,k} [/mm] = [mm] \bigcup\limits_{j=1}^{2^{n+1}} K_{n,j}$ [/mm]

mit disjunkten, abgeschlossenen Intervallen [mm] $K_{n,j}$ $(j=1,\ldots,2^{n+1})$, [/mm] die alle die Länge [mm] $3^{-n-1}$ [/mm] haben. Dabei denken wir uns die [mm] $K_{n,j}$ [/mm] numeriert im Sinne wachsender linker Eckpunkte. Ist [mm] $K_{n,j} [/mm] = [mm] [\alpha_{n,j}, \alpha_{n,j} [/mm] + [mm] 3^{-n-1}]$, [/mm] so definieren wir für [mm] $j=1,\ldots,2^{n+1}$: [/mm]

[mm] $I_{n+1,j}:= ]\alpha_{n,j} [/mm] + [mm] 3^{-n-2},\alpha_{n,j} [/mm] + 2 [mm] \cdot 3^{-n-2}[$, [/mm]

[mm] $K_{n+1,2j-1}:= [\alpha_{n,j},\alpha_{n,j} [/mm] + [mm] 3^{-n-2}]$, [/mm]
[mm] $K_{n+1,2j}:=[\alpha_{n,j} [/mm] + [mm] 2\cdot 3^{-n-2},\alpha_{n,j} [/mm] + [mm] 3^{-n-1}]$. [/mm]

Damit wird

$C = [0,1] [mm] \setminus \bigcup\limits_{n=0}^{\infty} \bigcup\limits_{j=1}^{2^n} I_{n,j}$ [/mm]

die Cantor-Menge (das Cantorsche Diskontinuum).

Man errechnet nun leicht:

[mm] $\lambda(C) [/mm] = 1 - [mm] \sum\limits_{n=0}^{\infty} \sum\limits_{j=1}^{2^n} \lambda(I_{n,j}) [/mm] = 1 - [mm] \sum\limits_{n=0}^{\infty} 2^n \cdot 3^{-n-1} [/mm] = 1 - [mm] \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} [/mm] = 0$.

Für [mm] $Q:=\delta_0$ [/mm] (das Dirac-Maß mit Schwerpunkt in $0$) gilt natürlich:

$Q(C)=1$.

Ob das mal so gemeint war? ;-) Egal, Aufgabe trivialisiert und dann gelöst. [sunny]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]