www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchy-Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Cauchy-Kriterium
Cauchy-Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Kriterium: Aufgabe
Status: (Frage) überfällig Status 
Datum: 14:52 Sa 29.11.2008
Autor: Blaze

Aufgabe
Zeigen Sie, ohne Benutzung des Supremumaxioms aber mit Hilfe von Archimedes, dass aus der Konvergenz beliebiger Cauchyfolgen die Konvergenz von monoton beschränkten Folgen folgt.

So, das ist die Aufgabe. Bei Wikipedia habe unter Archimedisches Axoim folgendes gefunden:
[mm] \forall x\in\IR \exists n\in\IZ [/mm] : [mm] n unter einer Cauchyfolge hatten wir eine Folge definiert die folgende Eigenschaft hat:
[mm] \forall\epsilon>0 \exists n_0\in\IN, \forall m,m'\ge n_0: |x_m-x_m'|<\epsilon [/mm]
Das sind soweit die Definitionen die ich habe, aber eine wirkliche Idee habe ich nicht, eine monotone und beschränkte konvergiert doch immer oder nicht?

        
Bezug
Cauchy-Kriterium: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 01.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Cauchy-Kriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:59 Di 02.12.2008
Autor: Marcel

Hallo,

> Zeigen Sie, ohne Benutzung des Supremumaxioms aber mit
> Hilfe von Archimedes, dass aus der Konvergenz beliebiger
> Cauchyfolgen die Konvergenz von monoton beschränkten Folgen
> folgt.
>  So, das ist die Aufgabe. Bei Wikipedia habe unter
> Archimedisches Axoim folgendes gefunden:
>  [mm]\forall x\in\IR \exists n\in\IZ[/mm] : [mm]n
> unter einer Cauchyfolge hatten wir eine Folge definiert die
> folgende Eigenschaft hat:
>  [mm]\forall\epsilon>0 \exists n_0\in\IN, \forall m,m'\ge n_0: |x_m-x_m'|<\epsilon[/mm]
>  
> Das sind soweit die Definitionen die ich habe, aber eine
> wirkliche Idee habe ich nicht, eine monotone und
> beschränkte konvergiert doch immer oder nicht?

ja, der Beweis erfolgt aber (meist) mit dem Supremumsaxiom; aber so sollst Du ja gerade nicht vorgehen.

Vielmehr ist es hier Deine Aufgabe, zu zeigen:
Sei [mm] $(a_n)_n$ [/mm] monoton wachsend und nach oben beschränkt. Dann ist [mm] $(a_n)_n$ [/mm] eine Cauchyfolge. (Und das soll nicht so gezeigt werden, dass man benutzt, dass [mm] $(a_n)_n$ [/mm] konvergiere, sondern eben nur mit dem Archimedischen Axiom!)
(Für [mm] $(a_n)_n$ [/mm] monoton fallend und nach unten beschränkt folgt analoges durch Betrachten der Folge [mm] $(-a_n)_n$.) [/mm]

Denn:
Wenn Du [mm] $(a_n)_n$ [/mm] als Cauchyfolge erkannt hast, dann liefert, weil nach Voraussetzung jede Cauchyfolge konvergiert, dies dann insbesondere die Konvergenz von [mm] $(a_n)_n$. [/mm]

P.S.:
Dein Archimedisches Axiom kann man zwar auch irgendwie so nennen, aber ich kenne diese Formulierung:
[]Wiki: Arch. Axiom

bzw. noch kürzer:
Für alle $x [mm] \in \IR$ [/mm] exisitiert ein $n [mm] \in \IN$ [/mm] mit $n > x$ (man könnte es auch angeben mit $n:=[x]+1$, wobei [mm] $[x]=\max\{z \in \IZ: z \le x\}$; [/mm] allerdings muss man sich dabei auch Gedanken machen, wieso man sowas so hinschreiben kann/darf (zumindest im ersten Semester)).

Also:
Sei [mm] $(a_n)_n$ [/mm] monoton wachsend. Ich denke mal, ein guter Ansatz wäre es nun, zu zeigen:
Ist [mm] $(a_n)_n$ [/mm] keine Cauchyfolge, so ist [mm] $(a_n)_n$ [/mm] auch nicht nach oben beschränkt.
(Das ist die Kontraposition zu: Ist die Folge [mm] $(a_n)_n$ [/mm] nach oben beschränkt, so ist sie eine Cauchyfolge. Beachte, dass ich die Monotonie hier als Universalvoraussetzung gesetzt habe!)
Weil [mm] $(a_n)_n$ [/mm] keine CF ist, gibt es ein [mm] $\varepsilon_0 [/mm] > 0$ so, dass für jedes $N [mm] \in \IN$ [/mm] dann $n,m [mm] \in \IN$ [/mm] mit $n > m [mm] \ge [/mm] N$ so existieren, dass [mm] $|a_n-a_m| \ge \varepsilon_0$. [/mm]

Wir finden also ein [mm] $n_1 [/mm] > 1$ mit [mm] $a_{n_1}-a_1 \ge \varepsilon_0$: [/mm]
Also gilt
[mm] $$a_{n_{\green{1}}}=a_{n_1}-a_1+a_1 \ge \green{1}*\varepsilon_0+a_1\,.$$ [/mm]

Zu [mm] $n_1 \in \IN$ [/mm] finden wir ein [mm] $n_2 [/mm] > [mm] n_1$ [/mm] mit [mm] $a_{n_2}-a_{n_1} \ge \varepsilon_0$. [/mm] Dann gilt [mm] $$a_{n_{\green{2}}}=a_{n_2}-a_{n_1}+a_{n_1}-a_{1}+a_{1} \ge \green{2}*\varepsilon_0+a_1$$ [/mm]
$$.$$
$$.$$
$$.$$

Überlege Dir, wie Du so eine Teilfolge [mm] $(a_{n_k})_k$ [/mm] von [mm] $(a_n)_n$ [/mm] konstruieren kannst, die unbeschränkt ist.
Was heißt das dann für [mm] $(a_n)_n$ [/mm] selbst? Erkennst Du den Widerspruch?

(Bzw. wenn man in der Formulierung der Aufgabenstellung bleibt:
Warum kann man so eine TF [mm] $(a_{n_k})_k$ [/mm] von [mm] $(a_n)_n$ [/mm] so angeben, dass, wäre [mm] $(a_n)_n$ [/mm] beschränkt, wir dann auch erhielten, dass [mm] $\IN$ [/mm] beschränkt ist. Warum steht das im Widerspruch zu Archimedes?)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]