www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenCauchy-integrationsformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Cauchy-integrationsformel
Cauchy-integrationsformel < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-integrationsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:58 Mo 08.06.2015
Autor: DepressiverRoboter

Aufgabe
Werten sie aus:

[mm] \integral_{|z-1|=3}^{}{\bruch{dz}{z(z^2-4)e^z}} [/mm]

Hallo, hier habe ich ein kleines Problem.

Erstmal die Cauchy-Integralformel:
[mm] \integral_{\gamma}^{}{\bruch{f(z)dz}{z-z_0}}=2*i*pi*f(z_0) [/mm]
(wenn [mm] \gamma [/mm] geschlossen und [mm] z_0 [/mm] innerhalb des von [mm] \gamma [/mm] eingeschlossenen Bereiches.)

So, nun zur Aufgabe
Das Integral kann ich erstmal in die Form bringen:
[mm] \integral_{|z-1|=3}^{}{\bruch{dz}{z(z+2)(z-2)e^z}} [/mm]

Doch wie geh ich nun vor? Kann ich einfach das folgende tun?
[mm] \integral_{|z-1|=3}^{}{\bruch{dz}{z(z+2)(z-2)e^z}}=\integral_{|z-1|=3}^{}{\bruch{dz*\bruch{1}{z*(z+2)*e^z}}{z-2}} [/mm]

Und schliesslich mithilfe der Cauchy Integralformel:
[mm] \integral_{|z-1|=3}^{}{\bruch{dz*\bruch{1}{z*(z+2)*e^z}}{z-2}}=2*i*pi*\bruch{1}{2*(2+2)*e^2}=\bruch{pi*i}{4e^2} [/mm]

Geht das so?? irgendwas riecht mir komisch, vor allem weil ja die Auswahl "welchen Faktor lasse ich unter dem Bruchstrich" (also z+2 oder z-2) willkuerlich ist. Wenn ich naemlich das folgende mache:
[mm] \integral_{|z-1|=3}^{}{\bruch{dz*\bruch{1}{z*(z+2)*e^z}}{z-2}}=\integral_{|z-1|=3}^{}{\bruch{dz*\bruch{1}{z*(z-2)*e^z}}{z+2}} [/mm]

Dann ist mein [mm] z_0 [/mm] auf einmal -2 statt +2 und ich kaeme zum Ergebnis:
[mm] \integral_{|z-1|=3}^{}{\bruch{dz*\bruch{1}{z*(z-2)*e^z}}{z+2}}=2*pi*i*\bruch{1}{(-2)*(-2-2)*e^{-2}=2*pi*i*e^{-2}}=\bruch{pi*i}{4e^{-2}}\not=\bruch{pi*i}{4e^2} [/mm]

Dies ist offensichtlich Unfug, dasselbe Integral kann mir ja nicht 2 verschiedene Loesungen geben. Was mache ich falsch?? Hab ich da irgendwo ein Verstaendnisproblem? Mache ich was illegales?

Danke im Vorraus!

        
Bezug
Cauchy-integrationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:32 Mo 08.06.2015
Autor: fred97

In der Kreisscheibe |z-1|<3 hast Du 3 Polstellen:

  0,2 und -2.

Das riecht nach Residuensatz.

FRED

Bezug
                
Bezug
Cauchy-integrationsformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:08 Mo 08.06.2015
Autor: DepressiverRoboter

Der Tipp kam gut, ehrlich gesagt hatte ich mir den Residuensatz noch garnicht angeschaut. Jetzt kann ich gleich prompt das Cauchy-theorem, die Cauchy-Integralform und die Cauchy-Integralform der Ableitungen vergessen....sind ja alles Spezialfaelle davon!
Damit ist die Sache klar, danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]