Cauchy Folgen im ang. Körper < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:10 Sa 29.06.2013 | Autor: | Killuah |
Aufgabe | Zeigen sie für einen beliebigen archimedisch angeordneten Körper k:
Sind [mm] (a_{n})_{n} [/mm] und [mm] (b_{n})_{n} [/mm] Cauchy-Folgen in K, dann ist auch [mm] (a_{n}+b_{n})_{n} [/mm] eine Cauchy-Folge in K. |
Ich habe einen Lösungsweg. Ich möchte nur nochmal fragen, ob dieser wirklich richtig ist, da mit Abschätzungen etc. noch einige Probleme bereiten:
Definition Cauchy:
[mm] \forall \varepsilon [/mm] > 0 [mm] \exists n_{0} \forall [/mm] n,m [mm] \ge n_{0}: |a_{n} [/mm] - [mm] a_{m}| [/mm] < [mm] \varepsilon
[/mm]
Damit kann ich dann ja annehmen, dass es ein [mm] n_{0} [/mm] gibt, sodass die Cauchy Bedingung für beide Folgen einzelnd erfüllt ist. (Ich nehme einfach das größere [mm] n_{0}.)
[/mm]
setze [mm] \bruch{\varepsilon}{2} [/mm] = [mm] |f_{n} [/mm] - [mm] f_{m}| [/mm] (hier nur f als Folgenglieder genommen, damit es "allgemein" bleibt)
| [mm] (a_{n}+b_{n}) [/mm] - [mm] (a_{m}+b_{m})| [/mm] =
[mm] |a_{n}+b_{n}-a_{m}-b_{m}|=
[/mm]
[mm] |a_{n}-a_{m}+b_{n}-b_{m}| \le [/mm] (mit der Dreiecksungleichung)
[mm] |a_{n}-a_{m}|+|b_{n}-b_{m}|= [/mm]
[mm] \bruch{\varepsilon}{2} [/mm] + [mm] \bruch{\varepsilon}{2} [/mm] =
[mm] 2*\bruch{\varepsilon}{2} [/mm] = [mm] \varepsilon
[/mm]
Damit bin ich fertig, oder? ich habe gezeit, dass ich zwei Cauchy Folgen in dem Körper nehmen kann, sie addieren kann und sie immernoch konvergieren.
Ich bin mir nämlich nicht ganz sicher, da mir ja ein "echt kleiner" in der Ungleichungskette fehlt...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:24 Sa 29.06.2013 | Autor: | leduart |
Hallo
richtig, aber das vorletzte = ist ein < Zeichen nach Vors.
Gruss leduart
|
|
|
|